期刊文献+

The divisor problem for arithmetic progressions

The divisor problem for arithmetic progressions
原文传递
导出
摘要 Let n≥1 and r≥2 be integers and let d<sub>r</sub>(n) denote the number of ordered r-tuples (n<sub>1</sub>,…,n<sub>r</sub>) of natural numbers for which multiply from 1≤j≤r (n<sub>j</sub>)=n For (a,q)=1,define D<sub>r</sub>(X,q,a)=sum from n≤X n≡a(modg) (d<sub>r</sub>(n)). We are interested in finding numbers θ<sub>r</sub> as large as possible such that the following statement holds.
作者 李红泽
出处 《Chinese Science Bulletin》 SCIE EI CAS 1995年第4期265-267,共3页
基金 Project supported by the National Natnral Science Foundation of China
关键词 ARITHMETIC PROGRESSION DIVISOR problem. ARITHMETIC PROGRESSION DIVISOR PROBLEM
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部