期刊文献+

A criterion for primitive polynomials over Galois rings

A criterion for primitive polynomials over Galois rings
原文传递
导出
摘要 The theory of primitive polynomials over Galois rings is analogue to the same one over finite fields. It also provides useful tools for one to study the maximal period sequences over Galois rings. In the case of F<sub>q</sub>, we have more complete results. In the case of Z<sub>p<sup>n</sup></sub>, n≥2, there are also some results. In particular, according to refs. [3, 4] and using the technique of trace representation of maximal period sequences over F<sub>q</sub>, we have found a discriminant which can judge whether a given polynomial f(x) over Z<sub>p<sup>n</sup></sub> is a primitive polynomial if f(x) mod p is a primitive polynomial over F<sub>p</sub>. Furthermore, it is easy to calculate the discriminant using the coefficients of f(x).
作者 祝跃飞
出处 《Chinese Science Bulletin》 SCIE EI CAS 1995年第22期1869-1872,共4页
关键词 GALOIS ring FINITE field (sub) PRIMITIVE POLYNOMIAL discriminant. Galois ring finite field (sub) primitive polynomial discriminant
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部