期刊文献+

Integrating the equations of motion of a nonholonomic system by quadratures 被引量:1

Integrating the equations of motion of a nonholonomic system by quadratures
原文传递
导出
摘要 Reference [1] points out that if a Hamiltonian system with n degrees of freedom hasn independent first integrals in involution, i.e. the Lie algebra is commutative, then it canbe integrated by quadratures. This note studies a particular nonholonomic system, theequations of whose motion can be transformed in the form of Hamilton’s canonical equa-tions. If a sufficiently large number of the independent first integrals in involution is ob-tained, then the above result used to study holonomic systems can be applied to
出处 《Chinese Science Bulletin》 SCIE EI CAS 1995年第17期1424-1428,共5页
基金 Project supported by the National Natural Science Foundation and Doctoral Programme Foundation of Institution of Higher Education of China.
关键词 ANALYTICAL MECHANICS NONHOLONOMIC system integral. ANALYTICAL MECHANICS NONHOLONOMIC SYSTEM INTEGRAL
  • 相关文献

同被引文献13

  • 1罗绍凯.非线性非完整系统Vacco动力学方程的积分方法[J].应用数学和力学,1995,16(11):981-989. 被引量:7
  • 2Whittaker E T.A Treatise on the Analytical Dynamics of Particles and Rigid Bodies(Fourth Edition)[M].Cambridge:Cambridge University Press,1952.
  • 3Mei F X.On the integration methods of non-holonomic dynamics[J].International Journal of Non-Linear Mechanics,2000,35(2):229-238.
  • 4Guo Y X,Shang M,Luo S K,Mei F X.Poincaré-Cartan integral variants and invariants of nonholonomic constrained systems[J].InternationalJournal of Theoretical Physics,2001,40(6):1197-1205.
  • 5Zhang H B,Chen L Q.Connection of first integrals with particular solution of the nonsimultaneous variational equations for nonholonomicsystems[J].Mechanics Research Communications,2005,32(6):628-635.
  • 6Mei F X,Wu H B.Symmetry of Lagrangians of nonholonomic systems[J].Physics Letters A,2008,372:2141-2147.
  • 7Fu J L,Chen L Q,Chen B Y.Noether symmetries of discrete nonholonomic dynamical systems[J].Physics Letters A,2009,373:409-412.
  • 8梅凤翔.非完整系统力学基础[M].北京:北京工业学院出版社,1985..
  • 9梅凤翔 刘端 罗勇.高等分析力学[M].北京:北京理工大学出版社,1991..
  • 10梅凤翔,尚玫.Last Multiplier of Generalized Hamilton System[J].Chinese Physics Letters,2008,25(11):3837-3839. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部