摘要
An analytic-numerical solution of wave transformation in shoaling water is presented in this paper. The analytical expression for wave heights along the wave rays is derived in consideration of the combined effect of water depth shoaling, the wave refraction and the sea bottom friction. The wave rays (orthogonals) are calculated by a fourth order Runge-Kutta algorithm and the wave crest lines are computed by an iteration procedure. The numerical results are compared with analytical solution for a special case of parallel- straight contour shore and field data, and comparisons show that the proposed mathematical model and computation method are very useful and convenient for engineering application.
An analytic-numerical solution of wave transformation in shoaling water is presented in this paper. The analytical expression for wave heights along the wave rays is derived in consideration of the combined effect of water depth shoaling, the wave refraction and the sea bottom friction. The wave rays (orthogonals) are calculated by a fourth order Runge-Kutta algorithm and the wave crest lines are computed by an iteration procedure. The numerical results are compared with analytical solution for a special case of parallel- straight contour shore and field data, and comparisons show that the proposed mathematical model and computation method are very useful and convenient for engineering application.