摘要
An interface crack analysis is presented for further understanding the characteristics of the crack-tip field. The conditions under which the energy release rate components would exist are emphasized and the relations between energy release rate components and the stress intensity factors are given. Combining with the results of chasical plate theory analysis. a closed-form solution for stress intensity factors in terms of external loading as well as some geometric and material parameters for fairly general composite laminates is derived Then. an analytical solution for energy release rate components is deduced. In order to get energy release rate components under general loading condition. a mode mix parameter, Ω, must be determined separately. A methodology for determining Ω is discussed. Finally. several different kinds of laminates are examined and the results obtained could be used in engineering applications.
An interface crack analysis is presented for further understanding the characteristics of the crack-tip field. The conditions under which the energy release rate components would exist are emphasized and the relations between energy release rate components and the stress intensity factors are given. Combining with the results of chasical plate theory analysis. a closed-form solution for stress intensity factors in terms of external loading as well as some geometric and material parameters for fairly general composite laminates is derived Then. an analytical solution for energy release rate components is deduced. In order to get energy release rate components under general loading condition. a mode mix parameter, Ω, must be determined separately. A methodology for determining Ω is discussed. Finally. several different kinds of laminates are examined and the results obtained could be used in engineering applications.