摘要
设R=(r1,r2,…,rm),S=(S1,S2,…,Sn)。ri,Si是非负整数,U(R,S)是所有具有行和向量R和列和向量S的(0,1)—矩阵的集合,求出|U(R,S)|的势函数的表达式是一个未决问题,本文构作了一种“移1法”。通过这种方法,借助于递归原则,得出了U(R,S)的势fm,n(R.S)的递归公式:
Let R and S be two vectors with m and n nonegative Integers as conpenents respectively. U(R,S) be the class of all mxn (0,1) - Matrices with row Sum vector R and Column Sum vector S,Its Cardinal function is fm,n(R,S) In this paper The recurrence formula of fm,n(R,S) is derived.
出处
《云梦学刊》
1995年第3期1-5,共5页
Journal of Yunmeng