摘要
设f(z)为n值代数体函数,如果f(z)具有n+1个Borel例外函数,则f(z)是正规增长的,其级为正整数或无穷。如果f(z)的级ρ(0<ρ<∞)不为整数,记P为f(z)的Borel例外函数个数,q为f(z)的亏量等于1的Nevanlinna例外值个数,则P+q≤n.
Let f(y) be an n-values algebroid function suppose it has n + 1-Borel exceptional functions then it is regular groathful and its order is integer or infinite,let p be the number of Borel exceptional functions of f(y) q be the number of Nevanlinna exceptional values of f(z)whose defcective number is 1 if the order p of f(z) is not an integer then ρ + q ≤ n.
出处
《云梦学刊》
1995年第3期13-19,共7页
Journal of Yunmeng
关键词
代数体函数
亏量
特征函数
Algebroid funtion,Depective number,Characteristic function