期刊文献+

Amenability, Poincare series operator and Teichmuller distance 被引量:1

Amenability, Poincare series operator and Teichmuller distance
原文传递
导出
摘要 Any covering Y→X of a hyperbolic Riemann surface X determines an inclusion of Teichmuller spaces T(X)→T(Y). This map is shown to be an isometry for the Teichmuller metric iff the covering is amenable, and contracting iff for any [μ]εT(X), where is the Poincare series operator. Furthermore the inclusion is not a uniform contraction on T(X). Any covering Y→X of a hyperbolic Riemann surface X determines an inclusion of Teichmuller spaces T(X)→T(Y). This map is shown to be an isometry for the Teichmuller metric iff the covering is amenable, and contracting iff for any [μ]εT(X), where is the Poincare series operator. Furthermore the inclusion is not a uniform contraction on T(X).
作者 靖培栋
出处 《Science China Mathematics》 SCIE 1995年第10期1202-1210,共9页 中国科学:数学(英文版)
关键词 AMENABLE cover POINCARE series OPERATOR HOLOMORPHIC quadratic differential Teichmuller space. amenable cover, Poincare series operator, holomorphic quadratic differential, Teichmuller space.
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部