期刊文献+

A generalization of Grobner bases and a synthesis algorithm of multisequence over Z/(m)

原文传递
导出
摘要 A generalization of Gr(?)bner bases over ring (Z/(pe)[x1,…,xn])[I is given, where Z is the ring of integers, p is a prime, e≥1, and I is an ideal of Z/(pe)[x1,…,xn]. By applying this generalization, an algorithm is presented, which can synthesize multisequence with an equal or unequal length over Z[(m). The computational complexity of this algorithm is O(N2). A generalization of Gr(?)bner bases over ring (Z/(pe)[x1,…,xn])[I is given, where Z is the ring of integers, p is a prime, e≥1, and I is an ideal of Z/(pe)[x1,…,xn]. By applying this generalization, an algorithm is presented, which can synthesize multisequence with an equal or unequal length over Z[(m). The computational complexity of this algorithm is O(N2).
出处 《Science China Mathematics》 SCIE 1995年第5期552-561,共10页 中国科学:数学(英文版)
基金 Project supported by the State Key Laboratory of Information Security Graduate School of the Chinese Academy of Sciences
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部