摘要
本文首先给出了整系数多项式有二次整系数多项式因式的一个必要条件,进而通过对整系数多项式f(x)=AnX2十αn-1Xn-1+…+αo中xn-2的系数αn-2的讨论,得到一类整系数多项式在整数环上是否可约的一个判别法。
This paper at first gives a necessary condition to the polynomial of integer coefficient which includes square factors of integer coefficient and through the discussion on the coefficient an-2ofxn-2 in the integer polynomial f(x)=anx2+an-1xn-1+…+ao obtains a criterion which proves if a kind of polynomial of integer coefficient with indices above 3 is reducible or not in the integer ring.
出处
《大学数学》
1994年第4期64-67,共4页
College Mathematics
关键词
本原多项式
不可约多项式
primitive polynomial
irreducible polynomial