摘要
本文摆脱传统的除法,以括代除,无须极限也能求出切线,作出定理A。由此微积分完全改观。这是依靠实数有序“无漏”,建立强无穷小ω(Δx),取代ε—δ,实质又相互等价,作出定理B。由ω(Δx)定义无穷小与连续,由连续再作极限更为自然。聚点是极限的初步,大可发挥。
Division Δy/Δx may be simplified by taking out the factor Δx without limit, and we can also get the tangent line in Theorem A, which gives the differential, its coefficient gives the derivative. We construet the strong infinitesimal ω(Δx) in real number to replace ε-δ.
出处
《大学数学》
1994年第4期268-273,共6页
College Mathematics