期刊文献+

关于周长三分点的一个几何不等式

下载PDF
导出
摘要 1.引言 设P、Q、R分别位于△ABC的边BC、CA、AB上,且将△ABC的周长三等分,即AQ+AR=BR+BP=CP+CQ,QR=p,RP=q,PQ=r,则 p+q+r≥1/2(a+b+c)(1) 不等式(1)早就被人所知道,但它的证明无论是分析的还是几何的,都是十分复杂的。1960年,A·Zirakzadeh给出了一个属于纯粹几何的冗繁证明。1988年,曾振炳给了一个比较简单的证明。到1991年,杨学枝给出的证明则更加简单,令人惊异。而且他认为,(1)式似乎可以推广为:若AQ+AR=μ,BR+BP=λ,CP+CQ=ν。
作者 杨仕椿
出处 《西华大学学报(哲学社会科学版)》 1994年第2期73-74,共2页 Journal of Xihua University(Philosophy & Social Sciences)
  • 相关文献

参考文献1

二级参考文献1

  • 1陶懋颀,中国科学

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部