摘要
Ⅰ. INTRODUCTIONLet s=(S<sub>0</sub>, s<sub>1</sub>, s<sub>2</sub>,…) be an infinite sequence on GF(q), s<sup>n</sup>=(s<sub>0</sub>, s<sub>1</sub>,…,s<sub>n-1</sub>). The linear complexity of the sequence s<sup>n</sup> is defined to be L<sub>n</sub>(s)=min{1: s<sub>j</sub>=-sum from i=1 to l(C<sub>i</sub>S<sub>j-1</sub>), j=1, 1+1,…, n-1, c<sub>1</sub>,c<sub>2</sub>,…,c<sub>1</sub>∈GF(q)}, i.e. L<sub>n</sub>(s)is the smallest nonnegative integer L such that there exist the constants c<sub>1</sub>, c<sub>2</sub>,…,c<sub>1</sub> for
基金
Project supported by the National Natural Science Foundation of China