期刊文献+

从一道试题看几何中的变换

下载PDF
导出
摘要 在一次统一招生数学试题中有这样一道题;在四边形ABCD中,AB=CD,E、F为AD、BC的中点(如图1),延长EF交BA的延长成于G,交CD的延长线于H,求证∠BGF=∠CHF。本题证法很多,其中有一位考生是这样证明的: 连结EC,将△DCE绕E点顺时针方向旋转180°至△AC’E,D点转到A点的位置,C点转到C’的位置,这时,若连结C’B,则有∠3=∠4,故要证∠1=∠2,只要证明C’B∥EF,而已知BF=FC,又CF=FC’,得EF是△CC’B的中位线,问题得以解决。
作者 洪书生
出处 《中学教研(数学版)》 1989年第7期29-30,共2页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部