期刊文献+

ON ESTIMATIONS OF TRIGONOMETRIC SUMS OVER PRIMES IN SHORT INTERVALS(Ⅰ) 被引量:5

ON ESTIMATIONS OF TRIGONOMETRIC SUMS OVER PRIMES IN SHORT INTERVALS(Ⅰ)
原文传递
导出
摘要 Let α be a real number, x≥A≥2, e(θ) = e^(2xiθ), and suppose Λ(n) is Mangoldt's func-tion. In this paper the following result is mainly proved: Let ε be an arbitrarily small po-sitive number, and x^(91/(96+ε))≤A≤x. Then for any given positive c, there exists a positive c_1such that for A^(-1)log^cx ≤|α| ≤(logx)^(-c_1) there exitss sum from x-A<n≤x (Λ(n)e(nα)? A(logx)^(-c). Let α be a real number, x≥A≥2, e(θ) = e<sup>2xiθ</sup>, and suppose Λ(n) is Mangoldt’s func-tion. In this paper the following result is mainly proved: Let ε be an arbitrarily small po-sitive number, and x<sup>91/(96+ε)</sup>≤A≤x. Then for any given positive c, there exists a positive c<sub>1</sub>such that for A<sup>-1</sup>log<sup>c</sup>x ≤|α| ≤(logx)<sup>-c<sub>1</sub></sup> there exitss sum from x-A&lt;n≤x (Λ(n)e(nα)? A(logx)<sup>-c</sup>.
出处 《Science China Mathematics》 SCIE 1989年第4期408-416,共9页 中国科学:数学(英文版)
基金 Project supported by the National Natural Science Foundation of China.
关键词 NUMBER THEORY EXPONENTIAL sums. number theory exponential sums.
  • 相关文献

同被引文献10

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部