摘要
Starting from piezoelectric crystal dynamic equation etc., both the electric potential and surface charge induced by the incident wave are obtained with electrical boundary perturbation technique. The scattered waves are then derived including both surface and bulk waves through integral transformation with the induced charge as exciting source.The scattered surface waves from the grating on YZ-LiNbO3 are then numerically calculated, and both the reflective and forward scattering coefficients are given vs. the strip width. Furthermore, the surface wave phase velocity change when passing the grating is derived and numerically calculated too. The theoretical prediction agrees well with measured results.
Starting from piezoelectric crystal dynamic equation etc., both the electric potential and surface charge induced by the incident wave are obtained with electrical boundary perturbation technique. The scattered waves are then derived including both surface and bulk waves through integral transformation with the induced charge as exciting source.The scattered surface waves from the grating on YZ-LiNbO3 are then numerically calculated, and both the reflective and forward scattering coefficients are given vs. the strip width. Furthermore, the surface wave phase velocity change when passing the grating is derived and numerically calculated too. The theoretical prediction agrees well with measured results.