期刊文献+

行列式按行展开定理的一个证明

下载PDF
导出
摘要 定理:行列式等于它任意一行的所有元素与它们的对应代数余子式的乘积的和。 换句话说,行列式有按行的展开式: (见张禾瑞、郝鈵新编《高等代数》p123)。 这个定理提供了行列式计算的一个重要方法,运用它,可以把一个n阶行列式的计算问题转化为n-1阶行列式来处理。该定理的证明,一些教材中采用三步来完成。
作者 谭光全
出处 《四川职业技术学院学报》 1989年第1期17-18,共2页 Journal of Sichuan Vocational and Technical College
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部