期刊文献+

SEXTIC CYCLIC FIELDS CONTAINING CUBIC ROOT OF UNITY

SEXTIC CYCLIC FIELDS CONTAINING CUBIC ROOT OF UNITY
全文增补中
导出
摘要 In [1, 2], we get an explicit description of cubic cyclic fields by proving the following Theorem A. Let U={η∈(?)(p)|N<sub>2(p)</sub>η=1}, where p is a primitive cubic root of unity. Write G=U/U<sup>3</sup>. Suppose η∈(?)(p) such that 1, η, (?) are representative elements in a subgroup of order 3 of G. Let s=T<sub>(?)(P)</sub>.(?)η be the trace of η, and then the roots of x<sup>3</sup>-3x-s=0 define a <正> In [1, 2], we get an explicit description of cubic cyclic fields by proving the following Theorem A. Let U={η∈(?)(p)|N2(p)η=1}, where p is a primitive cubic root of unity. Write G=U/U3. Suppose η∈(?)(p) such that 1, η, (?) are representative elements in a subgroup of order 3 of G. Let s=T(?)(P).(?)η be the trace of η, and then the roots of x3-3x-s=0 define a cu
作者 李德琅
机构地区 Sichuan University
出处 《Chinese Science Bulletin》 SCIE EI CAS 1989年第22期1854-1856,共3页
基金 Project supported by the National Natural Science Foundation of China
关键词 CUBIC CYCLIC FIELD sextic CYCLIC FIELD defined equation cubic cyclic field sextic cyclic field defined equation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部