摘要
在本文中,我们用线性微分方程解的理论简明地证明了下面定理:若:1)W[x_1(t),x_2(t),……,x_n(t)]=0 t∈[a,b];2)矩阵的秩为n-1,则函数组x_1(t),x_2(t)……,x_n(t)在[a,b]的至少一个子区间上为线性相关。
In this paper we aplly the theory of the solution of linear differential equation to the brief proof of the theorem below: If: 1. W[x1[t], x2[t] ...... , xn[t]]=02. matrix:the rank of the matrix above is n-1.Then the functions x,(t), x,(t), ....., xa(t) are linear dependence functionson one or more than one subinlerval of [a,b].