期刊文献+

过氧化物酶体增殖物激活受体-γ及其配体在大鼠气道黏液高分泌中的作用 被引量:4

Effect of peroxisome proliferators activated receptor gamma and its ligand on airway mucus hypersecretion in rats
原文传递
导出
摘要 目的探讨过氧化物酶体增殖物激活受体-γ(PPAR-γ)及其配体对气道黏液高分泌的作用及其机制。方法应用随机数字表法将36只SD大鼠随机分为4组,其中生理盐水对照组(6只)雾化吸入生理盐水;罗格列酮对照组(6只)雾化吸入生理盐水,同时给予罗格列酮8mg/kg灌胃;丙烯醛组(6只)雾化吸入丙烯醛3.0mg/L,6h/d,连续12d;罗格列酮干预组根据不同剂量又分为低、中、高剂量组,每组各6只,在雾化吸入丙烯醛的同时分别给予2、4和8mg/kg罗格列酮灌胃。采用HE染色及阿辛蓝-过碘酸雪夫染色法观察支气管肺组织的病理改变和气道黏液物质改变,应用实时荧光定量逆转录-PCR及免疫组织化学SP法检测黏蛋白5AC和PPAR-γ的表达水平。组间比较采用方差分析,两组比较采用q检验,相关性分析采用Pearson法。结果丙烯醛组、牛理盐水对照组及低、中、高剂量罗格列酮干预组气道黏液物质的相对着色叫积分别为(60.2±9.3)%、(4.9±1.0)%、(53.3±8.5)%、(26.5±7.4)%和(12.54-3.7)%,组间比较差异有统计学意义(F=93.80,P〈0.01)。黏蛋白5AC蛋白在丙烯醛组、生理盐水对照组及低、中、高剂量罗格列酮干预组表达的积分吸光度值分别为4339±453、1636±282、3996±346、3048±331和2376±343,组间比较差异有统计学意义(F=67.74,P〈0.01);PPAR-γ蛋白表达的积分吸光度值分别为1159±184、838±151、1272±189、1568±282和1872±270,组间比较差异有统计学意义(F=21.53,P〈0.01)。内烯醛组、生理盐水对照组及低、中、高剂量罗格列酮干预组黏蛋白5ACmRNA表达的相对拷贝数分别为35.3±10.0、2.2±0.7、30.5±10.2、18.6±5.3和10.8±2.6,组间比较差异有统计学意义(F=29.67,P〈0.01);PPAR-γmRNA的相对拷贝数分别为7.8±1.9、2.0±0.6、9.8±2.8、18.6±5.3和31.6±8.9,组间比较差异有统计学意义(F=39.47,P〈0.01)。丙烯醛组PPAR-γ蛋白水平与黏蛋白5ACmRNA表达呈负相关(r=-0.880,P〈0.01)。结论内烯醛致气道黏液高分泌过程与PPAR-γ表达异常有关;PPAR-γ及其配体罗格列酬可以抑制丙烯醉诱导的气道黏液高分泌,其具体机制可能与下调黏蛋白5AC的表达有关。 Objective To explore the effect and the molecular mechanisms of peroxisome proliferators activated receptor gamma (PPAR-γ)and its ligand on airway mucus hypersecretion. Methods Thirty-six Sprague-Dawley rats were randomized into the following groups: ( 1 ) Rats in the saline control group (n = 6) received normal saline inhalation; (2) Rats in the rosiglitazone control group( n = 6) received inhaled saline and oral rosiglitazone 8 mg/kg simultaneously; (3) Rats in the acrolein group (n = 6 ) received inhaled acroline 3. 0 mg/L, 6 h/day, for 12 days; (4)Rats in the rosiglitazone intervention group (n = 18) received inhaled aerolein and oral roslglitazone 2 mg/kg, 4 mg/kg, 8 mg/kg, respectively, as the low dose, the moderate dose and the high dose intervention groups (n = 6 each). The lung tissue sections were stained with HE for histopathologlcal examination. The changes of airway mucus were examined with AB-PAS. Expressions of MUCSAC and PPAR-γ protein in the bronchial epithelium were detected by immunohistochemistry. The expression of mRNA was measured with real time RT-PCR. The data were analyzed with SPSS 10. 0 software. Variables were compared with One-Way ANOVA and q test. The correlations between variables were analyzed using Pearson' s correlation coefficient. Results The levels of airway mucuswere (60.2±9.3)%, (4.9±1.0)%, (53.3 ±8.5)%, (26.5 ±7.4)%, (12.5 ±3.7 ) % respectively in the acrolein group, the saline control group, the low dose rosiglitazone intervention group, the moderate dose rosiglitazone intervention group, and the high dose rosiglitazonc intervention group, the difference being significant among groups (F = 93.80, P 〈 0. 01 ). The protein expressions of MUC5AC in the bronchial epithelium examined by immunohistochemistry were 4339 ± 453, 1636 ±282, 3996 ± 346, 3048± 331, 2376± 343 respectively in the aerolein group, the saline control group, the low dose rosiglitazone intervention group, the moderate dose rosiglitazone intervention group, and the high dose rosiglitazone intervention group, the difference being significant among groups ( F = 67. 74, P 〈0. 01 ). The protein expressions of PPAR-γ were 1159 ± 184, 838 ± 151, 1272 ± 189, 1568 ± 282, 1872 ± 270 respectively in the acrolein group, the saline control group, the low dose rosiglitazone intervention group, the moderate dose rosiglitazone intervention group, and the high dose rosiglitazone intervention group, the difference being significant among groups ( F = 21.53, P 〈 0.01 ). The mRNA expressions of MUCSAC ( the relative copies) were 35.3± 10. 0, 2. 2± 0.7, 30. 5 ± 10. 2, 18.6 ± 5.3, 10. 8 ± 2. 6 respectively in the acrolein group, the saline control group, the low dose rosiglitazone intervention group, the moderate dose rosiglitazone intervention group, and the high dose rosiglitazone intervention group, the difference being significant among groups (F =29. 67, P 〈0. 01 ). The mRNA expressions of PPAR-γ (the relative copies) were 7.8 ± 1. 9, 2.0 ±0. 6, 9. 8 ±2. 8, 18. 6 ±5.3, 31.6 ± 8.9 in the acrolein group, the saline control group, the low dose rosiglitazone intervention group, the moderate dose rosiglitazone intervention group, and the high dose rosiglitazone intervention group, the difference being significant among groups ( F = 39. 47, P〈0. 01 ). The expression of MUC5AC mRNA was negatively correlated with the protein expression of PPAR-γ in the acrolein group ( r = - 0. 880, P 〈 0. 01 ). Conclusions PPAR-γ was involved in airway mucus hyperseeretion induced by acrolein. PPAR-γ and its ligand rosiglitazone inhibited acrolein-induced airway mucus bypersecretion, possibly through dowuregulation of MUC5AC.
出处 《中华结核和呼吸杂志》 CAS CSCD 北大核心 2009年第4期282-286,共5页 Chinese Journal of Tuberculosis and Respiratory Diseases
关键词 丙烯醛 黏液 过氧化物酶体增殖物激活受体 Acrolein Mucus Peroxisome proliferators-activated receptor
  • 相关文献

参考文献7

  • 1Borchers MT, Wert SE, Leikauf GD. Acrolein-induced MUC5ac expression in rat airways. Am J Physiol, 1998, 274 (4 Pt 1 ) : L573-L581.
  • 2Lillehoj ER, Kim KC. Airway mucus: its components and function. Arch Pharm Res, 2002, 25:770-780.
  • 3Kirkham S, Sheehan JK, Knight D, et al. Heterogeneity of airways mucus: variations in the amounts and glycoforms of the major oligomeric mucins MUC5AC and MUC5B. Biochem J, 2002, 361 ( Pt 3 ) :537-546.
  • 4Zuhdi Alimam M, Piazza FM, Selby DM, et al. Mue-5/5ac mucin messenger RNA and protein expression is a marker of goblet cell metaplasia in routine airways. Am J Respir Cell Mol Biol, 2000, 22:253-260.
  • 5Wang AC, Dai X, Luu B, et al. Peroxisome proliferatorsactivated receptor-gamma regulates airway epithelial cell aetivatin. Am J Respir Cell Mol Biol, 2001, 24:688-693.
  • 6Birrel MA, Patel HJ, McCluskie K, et al. PPAR-gamma agonists as therapy for disease involving airway neutrophilia. Eur Respir J, 2004, 24: 18-23.
  • 7Honda K, Marquillies P, Capron M, et al. Peroxisome proliferators-activated receptor gamma is express in airway and inhibits features of airway remodeling in a mouse asthma model. J Allergy Clin Immunol, 2004, 113:882-888.

同被引文献25

  • 1慢性阻塞性肺疾病诊治指南(2007年修订版)[J].中华结核和呼吸杂志,2007,30(1):8-17. 被引量:8232
  • 2Aubier M, Marthan R, Berger P, et al. COPD and inflammation : statement from a French expert group : inflammation and remodelling mechanisms. Rev Mal Respir, 2010, 27: 1254-1266.
  • 3Hart CM, Roman J, Reddy R, et al. PPARgamma: a novel molecular target in lung disease. J Investig Med, 2008, 56: 515- 517.
  • 4Tergaonkar V. NFkappaB pathway: a good signaling paradigm and therapeutic target. Int J Biochem Cell Biol, 2006, 38: 1647- 1653.
  • 5Bassaganya-Riera J, Song R, Roberts PC, et al. PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol, 2010, 23: 343-352.
  • 6Zhong N, Wang C, Yao W, et al. Prevalence of chronic obstructive pulmonary disease in China: a large, population-based survey. Am J Respir Crit Care Med, 2007, 176: 753-760.
  • 7Belvisi MG, Hele DJ, Birrell MA. Peroxisome proliferator- activated receptor gamma agonists as therapy for chronic airway inflammation. Eur J Pharmacol, 2006, 533 : 101-109.
  • 8Birrell MA, Patel HJ, McCluskie K, et al. PPAR-gamma agonists as therapy for diseases involving airway neutrophilia. Eur Respir J, 2004, 24: 18-23.
  • 9Caito S, Yang SR, Kode A, et al. Rosiglitazone and 15-deoxy- Delta12,14-prostaglandin J2, PPARgamma agonists, differentially regulate cigarette smoke-mediated pro-inflammatory cytokine release in monocytes/macrophages. Antioxid Redox Signal, 2008, 10: 253-260.
  • 10Wang X, Wang Y, Zhao X, et al. Potential effects of peroxisome proliferator-activated receptor activator on LPS-induced lung injury in rats. Pulm Pharmacol Ther, 2009, 22: 318-325.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部