摘要
采用模式识别技术,对反映刀具磨损状态的几个特征量构成的状态模式进行分析。针对状 态模式[6_(TR)~2ρ1〕T和[σ_(x)~2ρ_1]T的分布统计特性,构造了具有自适应性的“与 门”式刀具磨损状态的综合判据-无人管理学习分类器。结果证明,由状态模式[6_(Tr)~2ρ_1] 构成的刀具磨损状态综合判据在识别精度、通用性、实时性及灵敏度方面都令人满意。
The state patterns based on the charcteristics related on tool wear are analysed by the pattern recognition technigue. The recognizing critera being self-adaptive in reterence to the state patterns [σ_(TR)~2ρ_1]T and [σ_x^2ρ_1]T are given .Experimental results show that the criterion refering to [σ_(TR)~2ρ_1] T proves to be satisfactory in recognizing accuracy, flexibility, practicability and sensitivity.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
1989年第S1期99-104,共6页
Journal of Fuzhou University(Natural Science Edition)
关键词
在线监测
故障诊断
模式识别
时序分析
判据
on-line monitored, malfunction diagnosis, pattern recognition, time series analysis, criteria