摘要
Let A= (A<sub>1</sub>, …, A<sub>n</sub>) and B=(B<sub>1</sub>, …, B<sub>n</sub>) be double commuting n-tuples of operators on Hilbert space H and let L<sub>A<sub>i</sub></sub>, and R<sub>B<sub>j</sub></sub>, decode the left and right multiplications induced by A<sub>i</sub> and B<sub>j</sub>, respectively. The following results are proven: Sp (L<sub>A</sub>, R<sub>B</sub>)=Sp(A)×Sp(B), Sp<sub>e</sub>(L<sub>A</sub>, R<sub>B</sub>)=Sp<sub>e</sub>(A)×Sp(B) ∪ Sp(A)×Sp<sub>e</sub>(B).
Let A= (A_1, …, A_n) and B=(B_1, …, B_n) be double commuting n-tuples of operators on Hilbert space H and let L_(A_i), and R_(B_j), decode the left and right multiplications induced by A_i and B_j, respectively. The following results are proven: Sp (L_A, R_B)=Sp(A)×Sp(B), Sp_e(L_A, R_B)=Sp_e(A)×Sp(B) ∪ Sp(A)×Sp_e(B).