期刊文献+

ON EULER CHARACTERISTIC OF MODULES^(**)

ON EULER CHARACTERISTIC OF MODULES^(**)
原文传递
导出
摘要 This paper gives a characteristic property of the Euler characteristic for IBN rings. The following results: are proved. (1) If R is a commutative ring, M, N are two stable free R-modules, then χ(MN)=χ(M)χ(N), where χ denotes the Euler characteristic. (2) If f: K<sub>0</sub>(R)→Z is a ring isomorphism, where K<sub>0</sub>(R) denotes the Grothendieck group of R, K<sub>0</sub>(R) is a ring when R is commutative, then f([M])=χ(M) and χ(MN)=χ(M)χ(N) when M, N are finitely generated projective R-modules, where.the isomorphism class [M] is a generator of K<sub>0</sub>(R). In addition, some applications of the results above are also obtained. This paper gives a characteristic property of the Euler characteristic for IBN rings. The following results: are proved. (1) If R is a commutative ring, M, N are two stable free R-modules, then χ(MN)=χ(M)χ(N), where χ denotes the Euler characteristic. (2) If f: K_0(R)→Z is a ring isomorphism, where K_0(R) denotes the Grothendieck group of R, K_0(R) is a ring when R is commutative, then f([M])=χ(M) and χ(MN)=χ(M)χ(N) when M, N are finitely generated projective R-modules, where.the isomorphism class [M] is a generator of K_0(R). In addition, some applications of the results above are also obtained.
作者 佟文廷
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1989年第1期58-63,共6页 数学年刊(B辑英文版)
基金 The Project supported by National Natural Science Foundation of China.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部