期刊文献+

THE STRUCTURE OF ORTHOGONAL GROUPS OVER ARBITRARY COMMUTATIVE RINGS 被引量:1

THE STRUCTURE OF ORTHOGONAL GROUPS OVER ARBITRARY COMMUTATIVE RINGS
原文传递
导出
摘要 Let R be an arbitrary commutative ring, and n an integer≥3. It is proved for any ideal J of R thatEO<sub>2n</sub>(R, J)=[EO<sub>2n</sub>(R), EO<sub>2n</sub>(J)]=[EO<sub>2n</sub>(R), EO<sub>2n</sub>(R, J)]=[EO<sub>2n</sub>(R), O<sub>2n</sub>(R,J)]=[O<sub>2n</sub>(R), EO<sub>2n</sub>(R,J)].In particular, EO<sub>2n</sub>(R, J) is a normal subgroupof O<sub>2n</sub>(R). Furthermore, the problem of normal subgroups of O<sub>2n</sub>(R) has an affirmative solution if and only if aR∩ Ann(2)=α<sup>2</sup> Ann(2) for each a in R. In particular, if 2 is not a zero divisor in R, then the problem of normal subgroups of O<sub>2n</sub>(R) has an affirmative Let R be an arbitrary commutative ring, and n an integer≥3. It is proved for any ideal J of R that EO_(2n)(R, J)=[EO_(2n)(R), EO_(2n)(J)]=[EO_(2n)(R), EO_(2n)(R, J)] =[EO_(2n)(R), O_(2n)(R,J)]=[O_(2n)(R), EO_(2n)(R,J)]. In particular, EO_(2n)(R, J) is a normal subgroupof O_(2n)(R). Furthermore, the problem of normal subgroups of O_(2n)(R) has an affirmative solution if and only if aR∩ Ann(2)=α~2 Ann(2) for each a in R. In particular, if 2 is not a zero divisor in R, then the problem of normal subgroups of O_(2n)(R) has an affirmative solution
作者 李福安
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1989年第3期341-350,共10页 数学年刊(B辑英文版)
基金 Projects supported by the Science Fund of the Chinese Academy of Sciences
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部