期刊文献+

关于可化为常系数的线性微分方程的求解

ON THE SOLUTION TO THE LINEAR DIFFERENTIAL EQUATION THAT CAN BE CHANGED INTO THE EQUATION WITH CONSTANT COEFFICIENTS
下载PDF
导出
摘要 本文主要探讨可化为常系数的线性微分方程的求解问题。作为基础,先给出了定理1。其次,对于变系数二阶线性方程的求解,给出了定理2。最后,举例说明可化为常系数的线性微分方程的求解方法。 This paper mainly deals with the solution to the linear differential equation that can be changed into the one with constant coefficients.At first the theorem No.1 is given out as the foundation.And then,the paper offers the theorem No. 2 for the solution to the linear differential equation with variable coefficients of second order.Finally, the solution to linear differential equation that can be changed into the one with constant coefficients is explained through examples.
作者 胡启旭
出处 《武汉工业学院学报》 CAS 1989年第4期43-48,共6页 Journal of Wuhan Polytechnic University
关键词 积分因子 通解 特解 特征方程 特征根 基本对称多项式 integral factor universal solution particular solution characteristic equation characteristic root basically symmetric polynomial
  • 相关文献

参考文献2

  • 1(苏)彼得罗夫斯基,И.Г.著,黄克欧.常微分方程论讲义[M]高等教育出版社,1959.
  • 2(苏)史捷班诺夫(В.В.Степанов)著,卜元震.微分方程教程[M]高等教育出版社,1953.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部