期刊文献+

支持向量机后验概率方法在多任务脑机接口中的应用 被引量:6

SVM with Posteriori Probabilistic Output Applied in Multi-class Brain Computer Interface
下载PDF
导出
摘要 基于运动想象的脑机接口是把使用者的运动意图转变成控制外部设备的信号,它包括脑电数据采集,特征提取和模式分类等几个基本环节。本研究发展了用支持向量机后验概率输出进行分类,并用分类结果中具有大概率的测试样本扩充训练集的模式分类与特征更新方法,并把此方法应用于4类任务运动想象脑机接口实验。使用BCI CompetitionⅢ的数据Ⅲa,运用一对一共空间模式扩展方法进行特征提取,用支持向量机后验概率方法进行分类和训练样本扩充。结果表明:概率信息能提高BCI的性能;应用概率信息选取样本扩充训练集能增加分类器的稳健性。 A brain computer interface (BCI) based on motor imagery translates the user's motor intention into a control signal for peripheral equipments. The translation process includes data acquisition, feature extract and pattern recognition. In this article, we have developed SVM with posteriori probabilistic output for patterns recognition and expanded the training sets by adding test samples with great probability output. We applied this method to dataset Ⅲ a in BCI CompetitionⅢ 2005 which contained 4 motor image tasks. One-Versus-One Common Spatial Patterns (CSP) algorithm was adopted to extract feature vectors. Support vector machine (SVM) with posteriori probabilistic output was used for patterns recognition and expanding the training sets. The results showed that probabilistic information could improve the performance of BCI and the application of probabilistic information was available in enlarging the training dataset by adding test samples with big probability, thus to get an even more robust classifier.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2009年第2期171-176,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(30525030) 国家自然科学基金资助项目(60736029)
关键词 脑机接口 样本扩充 后验概率 共空间模式 Kappa系数 BCI sample expansion posteriori probabilistic CSP Kappa coefficient
  • 相关文献

参考文献15

  • 1Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interfaces for communication and control [J]. Clin Neurophysiol, 2002,113(7) :67 - 91.
  • 2Millan JDR. Brain-computer interfaces [A]. In: Arbib MA eds. Handbook of Brain Theory and Neural Networks [ M ]. (2nd Edition). Cambridge : MIT Press, 2002.6 - 10.
  • 3Vaughan TM. Guest editorial brain-computer interface technology: a review of the second international meeting [J]. IEEE Trans Rehabil Eng,2003,11:94- 109.
  • 4高上凯.浅谈脑—机接口的发展现状与挑战[J].中国生物医学工程学报,2007,26(6):801-803. 被引量:70
  • 5Wu Zhenhua, Yao Dezhong. Frequency detection based on stability coefficient for SSVEP-based BCIs [ J ]. Journal of Neural Engineering,2008,5:36 - 43.
  • 6Wu Zhenhua, Yao Dezhong. Stimulator selection in SSVEP-based BCI [J]. Medical Engineering & Physics (in press)
  • 7Liao Xiang,Yao Dezhong, Li Chaoyi. Combining Spatial Filters for the Classification of Single-Trial EEG in a Finger Movement Task [J]. IEEE Trans Biomed Eng,2007,54(5) :821 - 831.
  • 8Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles [ J ]. Clin Neurophysiol, 1999,110 : 1842 - 1857.
  • 9Muller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task [J]. Clin Neurophysiol, 1999,110:787 - 798.
  • 10Dornhege G. Increasing information transfer rates for brain-computer interfacing [ D]. Potsdam: University of Potsdam,2006.

二级参考文献12

  • 1Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interfaces for communication and control [ J ]. Clinical Neurophysiology, 2002, 113 : 767 - 791.
  • 2Moore MM. Real-world applications for brain-computer interface technology[J]. IEEE Transactions on Neural Systems Rehabilitation Engineering, 2003,11(2) : 162 - 165.
  • 3Wolpaw JR, Loeb GE, Allison BZ, et ol. BCI Meeting 2005-Workshop on Signals and Recording Methods [J ]. IEEE Transactions on Neural Systems Rehabilitation Engineering, 2006,14(2) : 138 - 141.
  • 4McFarland DJ, Anderson CW, MUller KR, et al. BCI Meeting 2005-Workshop on BCI Signal Processing: Feature Extraction and Translation[J]. IEEE Transactions on Neural Systems Rehabilitation Englneefing,2006,14(2) : 135 - 138.
  • 5KUbler A, Mushahwar VK, Hochberg LR, et al. BCI Meeting 2005--Workshop on Clinical Issues and Applications [ J ]. IEEE Transactions on Neural Systems Rehabilitation Engineering, 2006, 14(2) : 131 - 134.
  • 6Pfurtschener G, Neuper C. Motor imagery and direct brainComputer communication[ J]. Proceedings of the IEEE, 2001,89 (7) :1123- 1134.
  • 7Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(4): 441- 446.
  • 8Pfurtscheller G, Neuper C, Schlogl A. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters[J]. IEEE Transactions on Rehabilitation Engineering, 1998,6(3) :316 - 325.
  • 9Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia [ J ]. Nature, 2006,442(13) : 164- 171.
  • 10Mason SG, Bashashati A, Fatourechi M, et al. A comprehensive survey of brain interface technology designs[J]. Ann Biomed Eng, 2007, 35:137- 169.

共引文献69

同被引文献72

  • 1杨帮华,颜国正,丁国清,于莲芝.脑机接口关键技术研究[J].北京生物医学工程,2005,24(4):308-310. 被引量:21
  • 2杨立才,李佰敏,李光林,贾磊.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241. 被引量:68
  • 3杨帮华,颜国正,张永怀,付西光.脑机接口中一种改进的模式识别方法[J].中国生物医学工程学报,2006,25(2):234-237. 被引量:3
  • 4何庆华,吴宝明,彭承琳,王禾,钟渝.基于小波和神经网络的视觉诱发电位识别方法[J].仪器仪表学报,2007,28(6):1003-1006. 被引量:10
  • 5徐宝国,宋爱国.单次运动想象脑电的特征提取和分类[J].东南大学学报(自然科学版),2007,37(4):629-633. 被引量:10
  • 6Zhong Jiying,Xu Lei,Yao Dezhong.Semi-supervised learning based on manifold in BCI[J].Joural of Electronic Science and Technology of China,2009,7(1):22-25.
  • 7Li Yufeng,Kwok JT,Zhou Zhihua.Semi-supervised learning using label mean[C] // Proceedings of the 26 th International Conference on Machine Learning. Montreal: ACM,2009:633-640.
  • 8Li Yuanqing,Li Huiqi,Guan Cuntai,et al.A self-training semi-supervised support vector machine algorithm and its applications in brain computer interface[J].IEEE Transactions on Multimedia,2007,28(1):385-388.
  • 9Kelly JE.The cutting plane method for solving convex programs[J].Journal of Society for Industrial and Applied Mathematics,1960,8(4):703-712.
  • 10Blankertz B,Curio G,Müller KR.Classifying single-trial EEG:towards brain computer interlacing[J]. Advances in Neural Information Processing Systems,2002,14 (6):157-164.

引证文献6

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部