期刊文献+

基于后验概率的呼吸信号预测 被引量:2

Prediction of Respiration Signal Based on Posterior Probability
下载PDF
导出
摘要 放疗过程中,采用图像引导、呼吸门控或实时跟踪技术对受呼吸影响较大的胸腹部位肿瘤目标进行治疗时,需要对呼吸条件下目标的运动进行估计。呼吸运动具有不确定性,利用传统数学模型描述其变化规律时,无法有效处理该问题。本研究提出后验概率算法进行呼吸运动估计,并利用呼吸状态判别技术有效控制跟踪过程,以解决呼吸的非线性逼近和基线漂移等问题。实验通过对11例患者的呼吸运动进行预测,证实了所提出方法的有效性;在应对信号变化和延时等方面,后验概率估计与传统算法的比较,也取得了令人满意的效果。 In radiotherapy, it is necessary to utilize image-guided, gated treatment or real-time tracking to deal with the tumors locating in the lung or abdomen which are impacted by respiration motion. Therefore the motion of the tumor object has to be estimated during respiration. Linear prediction model is not valid to imitate the tumor motion because of the uncertainty of respiration motion. In this paper, we proposed a MAP-based method to predict respiration motion. The method can effectively deal with the practical problems of non-linear estimation and base line shifts; as well as the state-inferring technique of respiration is used to control the tracking process. In the experiment, the cases of respiration motions from 11 patients were used to validate our method. In dealing with challenging signal variation and time-delaying, the MAP-based method was compared with LP method, the obtained results were satisfying.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2009年第2期213-220,共8页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(60772120) 中国博士后基金(20070420803)
关键词 放射治疗 呼吸预测 肿瘤跟踪 概率估计 radiation therapy respiration prediction tumour-tracking probability estimation
  • 相关文献

参考文献12

  • 1Schweikard A, Glosser G, Bodduluri M, et al. Robotic motion compensation for respiratory movement during radiosurgery [ J ].Comput Aided Surg, 2000, 5(4) : 263 - 277.
  • 2Torsten R, Joachim D. Markerless real-time 3-D target region racking by motion backprojection from projection images[J]. IEEE Transactions on Medical Imaging, 2005, 24( 11): 1455- 1468.
  • 3Tacke M, Nill S, Oelfke U. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer [ J ]. Phys Med Biol, 2007, 52:N505 - N512.
  • 4Berbeco R, Jiang SB, Sharp GC, et al. Integrated radiotherapy imaging system (IRIS): design considerations of turnout tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors [J]. Phys Med Biol, 2004, 49: 243- 255.
  • 5Weiss E, Vorwerk H, Richter S, et al. Interfractional and intrafractional accuracy during radiotherapy of gynecologic carcinomas: a comprehensive evaluation using the ExacTrac system [J]. Radiat Oncol Biol Phys, 2003, 56(1): 69-79.
  • 6Ruan D, Fessler JA, Baiter JM, et al. Exploring breathing pattern irregularity with projection-based method [J]. Med Phys, 2006, 33 (7) : 2491 - 2499.
  • 7Ruan D, Fessler JA, Baiter JM, et al. Static and recursive estimation of respiratory motion with instantaneous phase adjustment [R]. VCII 7, 2007.
  • 8Sharp GC, Jiang SB. Prediction of respiratory tumour motion for real-time image-guided radiotherapy [J]. Phys Med Biol, 2004, 49:425 - 440.
  • 9Keall PJ, Vedam SS, George R, et al. Respiratory regularity gated 4D CT acquisition: concepts and proof of principle [ J]. Australas Phys Eng Sci Med, 2007, 30(3): 211- 220.
  • 10Weiss E, Wijesooriya K, Dill SV, et al. Tumor and normal tissue motion in the thorax during respiration: analysis of volumetric and positional variations using 4D CT [J]. Radiat Oncol Biol Phys, 2007, 67(1): 296-307.

同被引文献21

  • 1Seppenwoolde Y,Shirato H,Kitamura K,et al.Precise and real-time measurement of 3-D tumor motion in lung due to breathing and heartbeat,measured during radiotherapy[J].International Journal of Radiation Oncology Biology Physics,2002,53(4):822-834.
  • 2Clifford M A,Banovac F,Levy E,et al.Assessment of hepatic motion secondary to respiration for computer assisted interventions[J].Computer Aided Surgery,2002,7(5):291-299.
  • 3Hanley J,Debois M M,Mah D,et al.Deep inspiration breath-hold technique for lung tumors:The potential value of target immobilization and reduced lung density in dose escalation[J].International Journal of Radiation Oncology Biology Physics,1999,45(3):603-611.
  • 4Rosenzweig K E,Hanley J,Mah D,et al.The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer[J].International Journal of Radiation Oncology Biology Physics,2000,48(1):81-87.
  • 5Wagman R,Yorke E,Ford E,et al.Respiratory gating for liver tumors:Use in dose escalation[J].International Journal of Radiation Oncology Biology Physics,2003,55(3):659-668.
  • 6Tchoupo G N.Predictive Feedback Control of the Treatment Couch for Tumor Motion Compensation during Radiotherapy[D].Richmond,VA,USA:Virginia Commonwealth University,2008.
  • 7Kalet A,Sandison G,Wu H,et al.A state-based probabilistic model for tumor respiratory motion prediction[J].Phys Med Biol,2010,55(24):7615-7631.
  • 8Jin J,Ren L,Liu Q,et al.Combining scatter reduction and correction to improve image quality in cone-beam computed tomography(CBCT)[J].Medical Physics,2010,37(11):5634-5644.
  • 9Murphy M J,Dieterich S.Comparative performance of linear and nonlinear neural networks to predict irregular breathing[J].Phys Med Biol,2006,51(22):5903-5914.
  • 10Wu H,Sharp G C,Salzberg B,et al.A finite state model for respiratory motion analysis in image guided radiation therapy[J].Phys Med Biol,2004,49(23):5357-5372.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部