期刊文献+

头部组织感应电流磁共振电阻抗成像仿真研究 被引量:2

Simulation Study on Induced Current Magnetic Resonance Electrical Impedance Tomography of Brain Tissues
下载PDF
导出
摘要 将感应电流磁共振电阻抗成像(IC-MREIT)应用于人体头部组织电导率重构,并在三层球头模型上进行仿真研究。首先建立二次磁场Z方向磁感应强度摄动对有限元头模型中单元电导率摄动的灵敏度矩阵;然后分析系统中激励线圈个数、激励线圈与三层球头模型相对位置及激励线圈半径等因素对灵敏度矩阵性态的影响,为IC-MREIT系统激励线圈优化设计提供指导;最后采用灵敏度矩阵法对三层球头模型非均匀电导率分布进行重构,仿真结果证明IC-MREIT技术用于重构头部组织电导率分布是可行的,在无创头部组织电导率检测领域具有潜在的应用价值。 Induced current magnetic resonance electrical impedance tomography (IC-MREIT) was used to reconstruct electrical conductivity of the brain tissues. A series of simulation studies were conducted using the three-sphere head model. Firstly, the sensitivity matrix was built according to the perturbation of secondary magnetic flux density with respect to the perturbation of clement conductivity of finite-element head model. Secondly, the effects of the number of excitation coils, as well as the relative placement between them and the three-sphere head model and their radii on property of sensitivity matrix were analyzed, for the purpose of guiding rationale design of excitation coils in IC-MREIT system. Finally, the sensitivity matrix method was adopted to reconstruct non-uniform electrical conductivity distribution of the three-sphere head model. The present simulation study indicates the feasibility and potential applications of IC-MREIT to reconstruct the electrical conductivity distribution of brain tissues.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2009年第2期244-250,256,共8页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(5057705) 美国国家科学基金(NSFBES-0602957,BES-0411898) 美国国立卫生院基金(NIHR21006070,R01EB007920)
关键词 感应电流磁共振电阻抗成像 磁共振电阻抗成像 电阻抗成像 灵敏度矩阵 头部组织 induced current magnetic resonance electrical impedance tomography magnetic resonance electrical impedance tomography electrical impedance tomography, sensitivity matrix brain tissue
  • 相关文献

参考文献16

  • 1He B. Modeling and Imaging of Bioelectrical Activity - Principles and Applications [M]. USA: Kluwer Academic Publishers, 2004.
  • 2He B. Neural engineering[M ]. USA: Kluwer Academic Publishers, 2005.
  • 3Woo FJ, Lee SY, Mun CW. Impedance tomography using internal current density distribution measured by nuclear magnetic resonance[A] .In: Proceedings of SPIRE[C]. Florida: ,SPIE, 1994. 377 - 385.
  • 4Kwon O, Woo E J, Yoon J K, et al. Magnetic resonance electrical impedance tomography (MBEIT) : simulation study of J-sbstitution algorithm [J] .IEEE Trans Biomed Eng, 2002,49(2) : 160- 167.
  • 5Oh S H, Lee BI, Woo EJ, et al. Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography [ J ]. Phys Med Biol, 2003,48:3101 - 3116.
  • 6Ider YZ, Onart S. Algebraic reconstruction for 3D magnetic resonance-electrical impedance tomography (MREIT) using one component of magnetic flux density [J]. Physiol Mess, 2004,25:281 - 294.
  • 7Gao Nan, Zhu Sanan, He B. A new magnetic resonance electrical impedance tomography (MREIT) algorithm: the RSM-MREIT algorithm with application to estimation of human head conductivity [ J]. Phys Med Biol, 2006,51 : 3067 - 3083.
  • 8闫丹丹,张孝通,朱善安,Bin He.头部组织三维核磁共振电阻抗成像算法的仿真研究[J].生物物理学报,2006,22(6):461-470. 被引量:7
  • 9Ozparlak L, Ider YZ. Induced current magnetic resonance-electrical impedance tomography [ J]. Physiol Meas, 2005,26 : $289 - $305.
  • 10Xu Y, He B. Magnetoacoustic tomography with magnetic induction [J]. Phys Med Biol,2005,50:5175 - 5187.

二级参考文献31

  • 1He B (ed). Neural Engineering. USA: Kluwer Academic Publishers, 2005.
  • 2Woo E J, Lee SY, Mtm CW. Impedance tomography using internal current density distribution measured by Nuclear Magnetic Resonance. SPIE, 1994,2299:377~385.
  • 3Birgal O, Eyüboglu BM, Ider YZ. Current constrainted voltage scaled reconstruction (CCSVR) algorithm for MR-EIT and its performance with different probing current patterns.Phys Med Biol, 2003,48:653~671.
  • 4Birgül O, Eyüboglu BM, Ider YZ. New technique for high resolution absolute conductivity imaging using magnetic resonance-electrical impedance tomography (MR-EIT). Proc of SPIE International Symposium on Medical Imaging, 2001,880~888.
  • 5Khang HS, Lee BI, Oh SH, Woo E J, Lee SY, Cho MH,Kwon O, Yoon JR, Seo JK. J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT):phantom experiments for static resistivity images. IEEE Trans Med Imaging, 2002,21:695-702.
  • 6Kwon O, Lee JY, Yoon JR. Equipotential line method for magnetic resonance electrical impedance tomography (MREIT). Inverse Problems, 2002,18:1089~1100.
  • 7Ozdemir MS, Eyüboglu BM, Ozbek O. Equipotential projection-based magnetic resonance electrical impedance tomography and experimental realization. Phys Med Biol,2004,49:4765~4783.
  • 8Seo JK, Yoon JR, Woo E J, Kwon O. Reconstruction of conductivity and current density imaging using only one component of magnetic field measurements. IEEE Trans Biomed Eng, 2003,50(9): 1121 ~ 1124.
  • 9Oh SH, Lee BI, Woo E J, Lee SY, Cho MH, Kwon O, Seo JK. Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography. Phys Med Biol, 2003,48:3101~3116.
  • 10Oh SH, Lee BI, Woo E J, Lee SY Kim TS, Kwon O, Seo JK. Electrical conductivity images of biological tissue phantom in MREIT. Physiol Meas, 2005,26:S279~S288.

共引文献6

同被引文献38

  • 1高诺,朱善安,贺斌.Use of 3-D magnetic resonance electrical impedance tomography in detecting human cerebral stroke: a simulation study[J].Journal of Zhejiang University-Science B(Biomedicine & Biotechnology),2005,6(5):438-445. 被引量:2
  • 2殷朝庆,董秀珍,刘锐岗,尤富生,付峰,史学涛,王聪,刘程睿.脑磁感应成像的数学模型及仿真结果[J].第四军医大学学报,2006,27(20):1913-1915. 被引量:4
  • 3王聪,董秀珍,刘锐岗,史学涛,付峰,尤富生.磁感应断层成像技术中涡流问题的有限元法仿真研究[J].航天医学与医学工程,2007,20(3):219-222. 被引量:8
  • 4Mark J. Hamamura, L. Tugan Muftuler. Fast imaging for magnetic resonance electrical impedance tomography [J]. Magnetic Resonance Imaging. 2008,26:739-745.
  • 5Griffiths H. Magnetic induction tomography [J]. Meas Sci Techno. 2001,12(8):1126-1131.
  • 6Karl HoUaus, Christian Magele, et al. Numerical Simulation of the Eddy Current Problem in Magnetic Induction TomogTaphy for Biomedical Applications by Edge Elements[J]: IEEE TRANSACTIONS ON MAGNETICS. 2004,40(2):623-626.
  • 7H. Scharfetter, P. Riu, et al. Sensitivity maps for low-contrast pertur- bations within conducting background in magnetic induction tomography[J]. Physiological measurement. 2002,23(1):195-201.
  • 8Yasheng Maimaitijiang, Mohammed Ali Roula, et al. Parallelization methods for implementation of a magnetic induction tomography forward model in symmetric muhiprocessor systems[J]. Parallel Computing. 2008,34:497-507.
  • 9M. H. Pham and A. J. Peyton, A Model for the Forward Problem in Magnetic Induction Tomography Using Boundary Integral Equations[J]. IEEE TRANSACTIONS ON MAGNETICS. 44(10):2262-2267.
  • 10Hermann Scharfetter, Karl Hallaus, et al. Single-Step 3-D Image Re- construction in Magnetic Induction Tomography: Theoretical Limits of Spatial Resolution and Contrast to Noise Ratio[J]. Annals of Biomedical Engineering. 2006,34(11):1786-1798.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部