期刊文献+

扰动型无穷时滞微分方程适度解的存在性

Existence of Mild Solutions for Perturbed Infinite Delay Differential Equations
下载PDF
导出
摘要 利用相空间的方法,结合Hausdorff非紧性测度、强连续半群和Darbo不动点理论,研究相关半群在失去紧性的情况下,Banach空间中扰动型无穷时滞微分方程适度解的存在性,改进和推广了已有的一些结果. The purpose of this paper is to prove the existence of mild solutions for perturbed infinite delay differential equations in Banach space by using the phase-space method, the Hausdorff's measure of noncompactness,the strongly continuous semigroup and the Darbo fixed point theory. Neither the semigroup nor the function f is needed to be compact in our result.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2009年第2期146-150,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10571150)
关键词 HAUSDORFF非紧测度 相空间 适度解 强连续半群 扰动型无穷时滞微分方程 Hausdorff's measure of noncompactness phase space mild solution strongly continuous semigroup perturbed infinite delay differential equations
  • 相关文献

参考文献10

  • 1Ahmed N U. Semigroup Theory with Applications to Systems and Control,Pitman Research Notes in Mathematics Series 246 Longman Scientific & Technical [M]. New York: Harlow John Wiley & Sons, Inc,1991.
  • 2Freidman A. Partial Differential Equations [M]. New York: Holt Rinehat and Winston, 1969.
  • 3Hale J K,Kato J. Phase spacefor retarded equations with infinite delay [J]. Funkcial Ekvac,1978,21:11-41.
  • 4Adimy M,Bouzahir H, Ezzinbi K. Existence and stability for some partial neutral functional differential equations with infinite delay [J]. J Math Anal Appl,2004,294:438-461.
  • 5Ahmed N U. Dynamic Systems and Control with Applications [M]. World Scientific Publishing Co Pte Ltd, Haekensack,N J,2006.
  • 6Baghli S,Benchohra M. Pertubed Functional and Neutral Functional Evolution Equations with Infinite Delay in Frechet Space [J]. Electronic Journal of Differential Equation, 2008,69 : 1-19.
  • 7Mouffak Benchohra.Smail Jebali,Toufik Moussaoui. Boundary Value Problems for Doubly Perturbed First Order Ordinary Differential Systems [J]. Electronic Journal of Qualitative Theory of Differential Equations,2006,11:1-10.
  • 8郭大钧.非线性分析中的半序方法[M].济南:山东科技出版社,2000..
  • 9HEINZ H P. On the behavior of measure of noncompactness with respect to differentiation and integration of veetor- valred functions [J]. Nonlinear Anal TAMA, 1993,7 : 1351 - 1371.
  • 10Hale J K, Verduyn Lunel S M. Introduction to Functional Differential Equations, Applied Mathematical Sciences 99 [M]. New York:Springer-Verlag, 1993.

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部