期刊文献+

镍基单晶合金中空穴绕夹杂形核及后续演化的有限元分析 被引量:2

Finite Element Analysis on Void Nucleation and Growth Around Inclusion in Nickel-based Single Crystal Superalloys
原文传递
导出
摘要 采用内聚力单元模拟镍基单晶合金中基体与夹杂之间的界面,对镍基单晶合金中空穴绕夹杂形核及扩张的过程进行了初步的分析。夹杂-基体界面的粘结强度不同,空穴的相对体积分数增长速度存在较大差异。粘结强度越小,空穴越容易形核,空穴扩张的速率越大;粘结强度越大,空穴越难于形核,空穴扩张的速率越小。应力三维度是空穴形核及扩张的主要驱动力,应力三维度越高,空穴形核及扩张的速率越大。应力三维度不同时,基体-夹杂界面开裂的初始位置及裂纹扩展的方式不同。在高应力三维度下空穴的演化由低应力三维度时的形状改变为主变为体积膨胀为主。Lode参数对空穴的形核过程及空穴形成后的扩张有着显著的影响。晶体取向对空穴的形核过程有着显著的影响,不同取向时基体-夹杂界面开裂的初始位置及裂纹扩展的方式不同。晶体取向对空穴的扩张有着显著的影响。在考虑镍基单晶合金的晶体取向相关性时,必须同时考虑Schmid系数、弹性模量和开动的滑移系。 The void nucleation and growth around an inclusion in nickel-based single crystal superalloys are analyzed by using the cohesive zone model to simulate the interface between the matrix and the inclusion.The strength of the interface includes its normal and shear strengths.The relative void volume fraction is noticeably different for different cohesive strengths.The smaller the cohesive strength is,the easier the void nucleation and the higher the void growth rate are.The stress triaxility is the main driving force of void nucleation and growth.The initial location of the interfacial debonding and subsequent crack propagation are different when the stress triaxility changes.At low stress triaxility,void deformation mainly exhibits itself as shape-change;at higher stress triaxility,it mainly exhibits itself as bulk expansion.Lode parameter has great effect on void growth and its shape change.The crystallographic orientation has considerable influence on void growth from initial debonding through complete separation to subsequent growth.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第1期179-185,共7页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(50775183) 教育部博士点基金(N6CJ0001)
关键词 单晶合金 夹杂 空穴 界面开裂 应力三维度 内聚力单元 single crystal superalloy inclusions void interface debonding stress triaxility cohesive element
  • 相关文献

参考文献12

  • 1Dunne F P E, Wilkinson A J, Allen R. Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal[J]. International Journal of Plasticity, 2007, 23(2): 273-295.
  • 2Shenoy M M, Kumar R S, McDowell D L. Modeling effects of nonmetallic inclusions on LCF in DS nickel-base superalloys[J]. International Journal of Fatigue, 2005, 27 (2): 113-127.
  • 3Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8 (2) : 100-104.
  • 4Barrenblatt G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55-125.
  • 5Shabrov M N, Sylven E, Kim S, et al. Void nucleation by inclusion craeking[J]. Metallurgical and Materials Transactions: A, 2004, 35(6):1745-1755.
  • 6Zhang J M, Li S X, Yang Z G, et al. Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime[J].International Journal of Fatigue, 2007, 29(4): 765-771.
  • 7Chandra N, Li H, Shet C, et al. Some issues in the application of cohesive zone models for metal-ceramic interfaces [J]. International Journal of Solids and Structures, 2002, 39(10) : 2827-2855.
  • 8Xu X P, Needleman A. Void nucleation by inclusion debonding in a crystal matrix[J].Modelling Simul Mater Sci Eng, 1993, 1: 111-132.
  • 9吴艳青,张克实.CRACK PROPAGATION IN POLYCRYSTALLINE ELASTIC-VISCOPLASTIC MATERIALS USING COHESIVE ZONE MODELS[J].Applied Mathematics and Mechanics(English Edition),2006,27(4):509-518. 被引量:1
  • 10Hibbit, Karlsson and Sorensen Inc. ABAQUS user's manual, version 6.5[M]. Pawtucket, USA: Hibbit, Karlsson and Sorensen, HKS Inc, 2004.

二级参考文献10

  • 1Espinosa H D,Zavattieri P D.A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials-Part Ⅱ: Numerial examples[].Mechanics of Materials.2003
  • 2Tvergaard V.Effect of fiber debonding in a whisker-reinforce metal[].Journal of Materials Science.1990
  • 3Tvergaard V.Crack growth predictions by cohesive zone model for ductile fracture[].Journal of the Mechanics and Physics of Solids.2001
  • 4Bjerke T W,Lambros J.Theoretical development and experimental validationof a theramally dissipative cohesive zone model for dynamic fracture of amorphous polymers[].Journal of the Mechanics and Physics of Solids.2003
  • 5Chandra N,Li H,Shet C,et al.Some issues in the application of cohesive zone models for metal-ceramic interfaces[].International Journal of Solids and Structures.2002
  • 6Barrenblatt G I.The mathematical theory of equilibrium cracks in brittle fracture[].Advances in Applied Mechanics.1962
  • 7Rice J R.Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity[].Journal of the Mechanics and Physics of Solids.1971
  • 8Dugdale D S.Yielding of steel sheets containing slits[].Journal of the Mechanics and Physics of Solids.1960
  • 9Meith W A,Hill M R.Domain-independent values of the J-integral for cracks in three-dimensional residual stress bearing bodies[].Engineering Fracture Mechanics.2002
  • 10Needleman A.A continuum model for void nucleation by inclusion debonding[].Journal of Applied Mechanics.1987

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部