期刊文献+

单周期三叉树模型中等价鞅测度的比较 被引量:2

Comparison of Equivalent Martingale Measures in One-Period Trinomial Tree Model
下载PDF
导出
摘要 在无套利假设下,用一个参数刻画单周期三叉树模型中的等价鞅测度,得到了Esscher变换测度和q-优化测度对应参数所满足的方程,然后利用数值计算对这些参数进行了比较. A parameter depicting the equivalent martingale measure in one-period trinomial tree model under the hypothesis of no arbitrage opportunity is found, and the equations which the parameters corresponding Esscher measure and q-optimal pricing measures must satisfy are given respectively. And then those different parameters are compared by numerical calculation.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2009年第1期11-15,共5页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(10571051) 国家自然科学基金资助项目(10871064)
关键词 三叉树模型 不完全市场 等价鞅测度 q-优化测度 trinomial tree model incomplete market equivalent martingale measure, q-optimal pricing measures
  • 相关文献

参考文献7

  • 1DUFFIE D, DICHARDOSON H R. Mean-variance hedging in continuous time[J]. Annals of Applied Probability, 1991, ( 1 ) : 1- 15.
  • 2SCHWEIZER M. Mean-variance hedging for general claims [ J ]. Annals of Applied Probability, 1992, (2) :171-179.
  • 3SCHWEIZER M. Variance optimal hedging in discrete time[ J]. Mathematics of Operations Research, 1995, (20) :1-31.
  • 4GERBER H U, SIU E S W. Option pricing by Esscher transform[ J ]. Transactions of the Society of Actuaries, 1994, (46) :99- 140.
  • 5FRITTELLI M. The minimal entropy matingale measure and the valuation problem in incomplete markets[J]. Mathematical Finance, 2000, (10) :39-52.
  • 6VICKY H, DAVID H, SAM H. A comparison of option prices under different pricing measures in a stochastic volatility model with correlation [ J ]. Review of Derivativatives Research, 2005, (8) :5-25.
  • 7MICHAEL M. The minimal entropy measure and an Esscher transform in an incomplete market model[J]. Statistics & Probability Letters, 2007, (77) : 1 070-1 076.

同被引文献17

  • 1韩立杰,刘喜波,刘宇.期权定价的新型三叉树方法[J].数学的实践与认识,2007,37(18):39-42. 被引量:11
  • 2VASICEK O. An equilibrium characterization of term structure[ J]. J Financial Econ, 1977,5 (2) :177-188.
  • 3JOHN H C, WHITE A. Pricing interest rate derivative securities[ J]. Rev Financial Stud, 1990,3 (4) :573-592.
  • 4JOHN C, JONATHAN E, STEPHEN A. An intertemporal general equilibrium model of asset prices and theory of the term struc- ture of interest rates[ J]. Econometrica, 1985,53 (2) :363-407.
  • 5BAZ J, DAS S R. Analytical approximations of the term structure for jump-diffusion processes : a numerical analysis [ J 1. J Fixed Income, 1996,6( 1 ) :78-86.
  • 6DAS S R, FORESI S. Exact solutions for bond and option prices with systematic jump risk[J]. Rev Derivatives Res, 1996,1 ( 1 ) :7-24.
  • 7CHACKO G, DAS S R. Pricing interest rate derivatives: a general approach[ J]. Rev Financial Stud, 2002,15( 1 ) :195-241.
  • 8BELIAEVA N A, NAWALKHA S K, SOTO G. Pricing American interest rate options under the jump-extended Vasicek model [J]. J Derivatives, 2008,16(1) :29-43.
  • 9KOU S G. A jump diffusion model for option pricing[ J ]. Manag Sci, 2002,48 (1) :1086-1101.
  • 10BELIAEVA N A, NAWALKHA S K. A simple approach to pricing American options under the Heston stochastic volatility model[ J ]. J Derivatives , 2010,17 (4) -25-43.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部