摘要
在一致光滑的实Banach空间中,研究当T为k-次增生算子时,非线性方程(1-k)x+Tx=f具混合误差的Ishikawa迭代解,给出了强收敛定理,并对Ishikawa迭代程序关于含k-次增生算子方程(1-k)x+Tx=f的稳定性进行了讨论,推广和改进了近期一些文献的相关结果.
We investigative the Ishikawa iterative solution with mixed errors for the nonlinear equation (1 - k)x + Tx = f in the uniformly smooth Banach space, where T is a k-subaccretive operator, we obtain a strong convergence theorem, and we discuss the stability of Ishikawa iterative processes for the nonlinear equation (1 - k)x + Tx = f containing a k-subaccretive operator. These results improve and external some authors corresponding results.
出处
《纯粹数学与应用数学》
CSCD
2009年第1期72-79,共8页
Pure and Applied Mathematics
基金
国家自然科学基金(10571113).