期刊文献+

基于相似性的点模型简化算法 被引量:8

Similarity-based simplification of point-sampled surfaces
下载PDF
导出
摘要 为了获得高质量的简化点模型,提出了一种基于相似性的曲率自适应点模型简化算法,相似性包括强特征边性和表面区域几何特征相似性2个方面.利用法向张量投票方法,计算采样点的特征边性,由此将点模型分为强边性和非强边性2部分;基于Mean Shift聚类法,对非强边性部分进行表面区域几何特征相似性聚类;对强边性部分和各类簇重采样,实现曲率自适应的简化,并通过移动最小二乘曲面,评估简化曲面的误差.实验结果表明,该算法有效地保持了特征边界部分和曲面的细节,且能够生成高质量的简化点集曲面. In order to achieve a high-quality simplified model, an adaptive curvature simplification algorithm for point-sampled surfaces was presented based on similarity including strong feature-edge intensity and surface feature anisotropy. Using the normal tensor voting, the feature-edge intensity of sample points was evaluated, by which the point-sampled surfaces were segmented into two parts, one for the strong featureedge intensity and another for the nonstrong feature-edge intensity. Base on Mean Shift clustering, the second part was clustered into clusters according to the surface-features similarity. The first part and all the clusters were resampled in combination with the surface variation and sampling-density control so as to generate the simplified point set. In addition, the quality of the simplified point set surfaces was evaluated using the error measurement method based on the moving least squares surfaces. Experimental results showed that this algorithm not only can effectively preserve the feature edges and the surface details, but also can achieve the simplified point set generating high-quality surface approximations to the origin point set surfaces.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第3期448-454,共7页 Journal of Zhejiang University:Engineering Science
基金 国家“863”高技术研究发展计划资助项目(2007AA01Z311,2007AA04Z1A5) 浙江省教育厅科研资助项目(Y200805211,Y200805999)
关键词 点模型简化 特征边性 Mean Shift聚类 移动最小二乘曲面 point-sampled surfaces simplification feature-edge intensity Mean Shift clustering moving least squares surfaces
  • 相关文献

参考文献20

  • 1MOENNING C, DODGSON N A. Intrinsic point cloud simplification [C]// Proceedings of GraphiCon 2004. Moscow:[s. n.], 2004 : 1147 - 1154.
  • 2何晖光,田捷,张晓鹏,赵明昌,李光明.网格模型化简综述[J].软件学报,2002,13(12):2215-2224. 被引量:57
  • 3PAULY M,GROSS M, KOBBELT L P. Efficient simplification of point-sampled surfaces [C]// Proceedings of IEEE Visualization. Boston: ACM, 2002 : 163 - 170.
  • 4ALEXA M, BEHR J, COHEN-OR D, et al. Point set surfaces [C]// Proceedings of IEEE Visualization. San Diego: IEEE Computer Society, 2001: 21- 28.
  • 5LINSEN L. Point cloud representation [R]. Karlsruhe: University of Karlsruhe, 2001.
  • 6PAULY M, GROSS M. Spectral processing of pointsampled geometry[J]. Computer Graphics, 2001,35 (4) :379 - 386.
  • 7KALAIAH A, VARSHNEY A. Statistical point geometry [C ]// Proceedings of Eurographics Symposium on Geometry Processing. Aachen: Eurographics Association, 2003 : 107- 115.
  • 8YU Z W, WONG H S. An efficient local clustering approach for simplification of 3D point-based computer graphics models [C]// Proceedings of the IEEE International Conference on Multimedia and Expo. Toronto: IEEE, 2006 : 2065- 2068.
  • 9王仁芳,张三元,叶修梓.点模型的几何图像简化法[J].计算机辅助设计与图形学学报,2007,19(8):1022-1027. 被引量:8
  • 10PAULY M, KEISER R, GROSS M. Multi-scale feature extraction on poin-sampled surfaces [J]. Computer Graphics Forum, 2003, 22(3) : 281 - 289.

二级参考文献23

  • 1张明礼,张三元,叶修梓,张新宇.点云曲面的多层次几何图像表示[J].计算机辅助设计与图形学学报,2004,16(12):1662-1667. 被引量:6
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3周晓云 刘慎权.基于特征角准则的多面体模型简化方法[J].计算机学报,1996,19:217-223.
  • 4李现民.三角网格简化及等值面抽取技术[博士学位论文].中国科学院计算技术研究所,2001..
  • 5Moenning C,Dodgson N A.Intrinsic point cloud simplification[C] //Proceedings of GraphiCon 2004,Moscow,2004:1147-1154
  • 6Linsen L.Point cloud representation[R].Karlsruhe:University of Karlsruhe,2001
  • 7Alexa M,Behr J,Cohen-Or D,et al.Point set surfaces[C] //Proceedings of the IEEE Visualization,San Diego,California,2001:21-28
  • 8Pauly M,Gross M,Kobbelt L.Efficient simplification of point-sampled surfaces[C] //Proceedings of the IEEE Visualization,Boston,2002:163-170
  • 9Wang J,Zhang S Y,Ye X Z.Point cloud simplification using geometry image[C] //Proceedings of the 1st Korea-China Joint Conference on Geometric and Visual Computing,Busan,2005:109-115
  • 10Gu X,Gortler S,Hoppe H.Geometry images[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,San Antonio,Texas,2002:355-361

共引文献110

同被引文献82

引证文献8

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部