期刊文献+

螺旋锥齿轮非线性振动特性及参数影响 被引量:7

Nonlinear vibration characteristics of helical bevel gear system and parameters influences
下载PDF
导出
摘要 引入沿啮合点法向的相对位移,建立了含间隙、时变啮合刚度和传动误差的螺旋锥齿轮传动7自由度动力学模型.运用五阶自适应Runge-Kutta方法对系统非线性振动特性和参数变化对混沌、冲击等行为的影响进行计算分析,得到冲击、非冲击的参数区间.结果表明,随着啮合频率增大、啮合刚度系数增大或啮合阻尼系数减小,系统分别经倍周期分岔、Hopf分岔两种途径进入混沌;随着载荷系数、啮合阻尼系数的增大和啮合刚度系数的减小,混沌和次谐波消减,冲击状况改善,间隙非线性的影响减弱,啮合阻尼系数变化的影响在轻载时更显著,而啮合刚度系数变化的影响在重载时更显著. By defining the relative displacement along the line of action, a 7 degree-of-freedom dynamic model of helical bevel gear system was developed, where backlash, time-varying mesh stiffness and transmission error were considered. System nonlinear dynamic behavior and effects of parameters variations on chaos and shock behavior were numerically studied by the 5-order self-adaptive Runge-Kutta method, and the parameter ranges of shock and no shock were obtained. The results indicated that the system went to chaos through period-doubling bifurcation with mesh frequency increasing, and through Hopf bifurcation with mesh stiffness coefficient increasing or damping coefficient decreasing. With load coefficient and mesh damping coefficient increasing, and mesh stiffness coefficient decreasing, chaos and sub-harmonic responses subtracted, shocking lightened and gear backlash nonlinearity effect decreased. In addition, damping coefficient variations affected more remarkably in the light load case, while stiffness coefficient variations affected more remarkably in the heavy load case.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第3期505-510,共6页 Journal of Zhejiang University:Engineering Science
关键词 螺旋锥齿轮 非线性振动 间隙 冲击 混沌 helical bevel gear nonlinear vibration backlash shock chaos
  • 相关文献

参考文献9

  • 1王三民,沈允文,董海军.含间隙和时变啮合刚度的弧齿锥齿轮传动系统非线性振动特性研究[J].机械工程学报,2003,39(2):28-32. 被引量:71
  • 2BONORI G, PELLICANO F. Non-smooth dynamics of spur gears with manufacturing errors [J]. Journal of Sound and Vibration, 2007,306: 271- 283.
  • 3CHEN G. Nonlinear behavior analysis of spur gear pairs with a one-way clutch[J]. Journal of Sound and Vibration, 2007, 301: 760-776.
  • 4赵文礼,周晓军.二自由度含间隙碰撞振动系统的分岔与混沌[J].浙江大学学报(工学版),2006,40(8):1435-1438. 被引量:7
  • 5ANDERSSON A, VEDMAR L. A dynamic model to determine vibrations in involute helical gears [J]. Journal of Sound and Vibration, 2003,260 : 195 - 212.
  • 6LI M, HUH Y. Dynamic analysis of a spiral bevel-rotor - bearing system [J]. Journal of Sound and Vibration, 2003, 259(3) :605 - 624.
  • 7LI M, HUH Y, JIANG P L, et al. Coupled axial-lateral - torsion dynamics of a rotor-bevel system geared by spur bevel gears [J]. Journal of Sound and Vibration, 2002, 254(3):427-446.
  • 8WANG Li-hua, HUANG Ya-yu, LI Run-fang, et al. Study on nonlinear vibration character of spiral bevel and hypoid gears transmission system [C]// International Conference on Mechanical Transmissions. Beijing: SciencePress, 2006: 1276- 1281.
  • 9CHENG Y, LIM T C. Vibration analysis of hypoid transmissions applying an exact geometry-based gear mesh theory [J]. Journal of Sound and Vibration, 2001,240(3) : 519 - 543.

二级参考文献6

  • 1晏蛎堂 李其汉.盘形锥齿轮的横向振动特性[J].航空动力学报,1988,3(2):23-27.
  • 2CHARTERJEE,MALLIK A K.Bifurcations and chaos in autonomous self-excited oscillators with impact damping[J].Journal of Sound and Vibration,1996(4):539-562.
  • 3SUNG C K,YU W S.Dynamics of a harmonically excited impact damper bifurcation and chaotic motion[J].Journal of Sound and Vibration,1992,158(2):317-329.
  • 4ZHAO Wen-li,WANG Lin-ze,XIE Jian-hua,et al.Hopf bifurcation of a impact damper[C]∥ Proceeding of the 3rd International Conference on Nonlinear Mechanics.Shanghai:Shanghai University Press,1998:437-440.
  • 5LIN S Q,BAPAT C N.Estimation of clearances and impact forces using vibroimpact response[J].Journal of Sound and Vibration,1993,163(3):407-421.
  • 6LUD Guan-wei,XIE Jian-hua.Bifurcation and chaos in a system with impacts[J].Physica D,2001,148:183-200.

共引文献76

同被引文献74

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部