期刊文献+

基于Brushlet变换多层阈值选择的SAR图像去噪

SAR Image Denoising Based on Multi-level Threshold Selection via Brushlet Transform
下载PDF
导出
摘要 Brushlet是一种新的图像方向信息分析工具,已被成功应用于图像融合与纹理分类等领域。提出一种基于Brushlet变换的多层阈值选择策略,并将其应用到SAR图像相干斑去噪中,通过对真实SAR图像的去噪实验表明,相比于传统的Wavelet方法,Brushlet变换域的多层阈值算法能获得更好的去噪效果,同时较好地保留了图像细节特征并获得更好的等效视数(ENL)。 Brushlet is a novel tool for image directionality analysis,which is adopted in image fusion and texture classification. A SAR image denoising algorithm based on multi - level threshold selection using Brushier is proposed. The denoising experimentson real SAR image prove that the proposed method outperforms the conventional Wavelet methods. The SAR image details can be well preserved and better ENL can be achieved by multi - level threshold via Brushlet.
出处 《现代电子技术》 2009年第8期97-99,102,共4页 Modern Electronics Technique
基金 国家自然科学基金资助项目(50675079)
关键词 BRUSHLET变换 方向性 多层阈值 SAR去噪 Brushlet transform directionality multi - level threshold SAR image denoising
  • 相关文献

参考文献11

  • 1Kuruoglu E E, Zerubia J. Modeling SAR Images with a Generalization of the Rayleigh Distribution [J]. IEEE Trans. on Image Processing, 2004,13(4): 527 - 533.
  • 2Achim A, Kuruoglu E E, Zrubia J. SAR Image Filtering Based on the Heavy-tailed Rayleigh Model[J]. IEEE Trans. on Image Processing,2006,15(9):2 686 - 2 693.
  • 3Xie H, Pierce L E, Ulaby F T. SAR Speckle Reduction Using Wavelet Denoising and Markov Random Field Modeling[J]. IEEE Trans. on Geoscience Remote Sensing, 2002, 40:2 196-2 212.
  • 4焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 5Po D D, Y Do M N. Directional Multiscale Modeling of Images Using the Contourlet Transform[J]. IEEE Trans. on Image Processing,2006,6,15(6):1 610 - 1 620.
  • 6Velisavljevie V, Beferull-Lozano B, Vetterli M, et al. Direc tionlets:Anisotropie Multi- directional Representation with Separable Fihering[J]. IEEE Trans. on Image Processing, 2006,15 (7):1 916-1 933.
  • 7Hu Ying, Hou Biao,Wang Shuang,et al. Texture Classification via Stationary - wavelet Based Contourlet Transform [A]. IWICPAS 2006[C]. 2006:485 -494.
  • 8Meyer F G,Coifman R R. Brushlets: A Tool for Directional Image Analysis and Image Compression[A]. Appl. Comput. Harmon. Anal. [C]. 1997,4(2) :147 - 187.
  • 9Shan Tan, Zhang Xiangrong, Jiao Licheng. A Brushlet- based Feature Set Applied to Texture Classification [A]. CIS 2004 [C],2004:1 175 - 1 180.
  • 10沙宇恒,丛琳,侯彪,焦李成.基于方向纹理信息的图像融合[J].电子与信息学报,2007,29(3):593-597. 被引量:4

二级参考文献69

  • 1[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 2[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 3[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 4[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 5[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 6[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 7[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 8[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.
  • 9[9]R A DeVore. Nonlinear approximation[ A].Acta Numerica[ M]. Cambridge University Press, 1998.
  • 10[10]D L Donoho. Sparse component analysis and optimal atomic decomposition[J]. Constructive Approximation, 1998,17:353 - 382.

共引文献229

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部