期刊文献+

不同反应参数下纤蛇纹石纳米管的水热合成研究 被引量:3

HYDROTHERMAL SYNTHESIS OF CHRYSOTILE NANOTUBES AT DIFFERENT REACTION-PARAMATERS
下载PDF
导出
摘要 以活性MgO和纳米SiO2为原料,在仿地质作用的碱性水热环境下控制不同反应参数合成了多个系列的纤蛇纹石样品。利用XRD和IR分析系统地研究了不同反应参数对纤蛇纹石特征的影响。结果表明,活性MgO和纳米SiO2在水热环境中很容易转变成纤蛇纹石相,但形成完善纳米管结构须严格控制水热反应条件;pH值、反应温度和反应时间的提高均有利于水热合成结晶度及管状结构更加完善的纤蛇纹石,最佳水热反应条件为pH=13.8,200℃,反应60h,此条件下无其它杂质产物生成,合成温度较前人采用的300℃有所降低。利用SEM和AFM对最佳反应条件下合成的纤蛇纹石纳米管的形貌进行了观察,发现其为短柱状,准直性较高,表面光洁无杂质,直径均一,约50nm,长度多为400~500nm。 :By controlling the reaction-parameters and in the alkaline hydrothermal-environment which was a simulation of geological action, some series of chrysotile samples were synthesized from activated MgO and nanophase SiO2. Then, X-ray diffraction analysis and infra-red sepectrometric analysis were conducted to systematically study the influence of different reaction-parameters on the synthesis of chrysotile tubes. The results showed that: activated MgO and nanophase SiO2 are transformed readily into chrysotile phase in the hydrothermal-environment, but the chrysotile nanotubes from under strict hydrothermal conditions ; The crystallinity of chrysotile nanotubes increases and the tubu- lar structure grows better as pH, temperature and reaction time increase, and the best hydrothermal conditions are pH = 13.8, temperature is 200 ℃ and reaction time is 60 hours, under which no other mineral is generated. Furthermore, this synthesis temperature is lower than that taken by predecessors (300 ℃ ). Using transmission electron mi- croseopy and atomic force microscopy to observe the shape of chrysotile nanotubes synthesized under the best hydrothermal eonditions, we have found that they are shortcolumnar in shape and of high collimation. Their surface is clean and their diameters are homogeneous (about 50 nm). Most of the chrysotile nanotubes are 400 -500 nm in length.
出处 《矿物学报》 CAS CSCD 北大核心 2009年第1期26-32,共7页 Acta Mineralogica Sinica
基金 国家自然科学基金(批准号:40372030)
关键词 纤蛇纹石纳米管 合成实验 水热法 反应参数 chrysotile nanotube synthesis experiment hydrothermal method reaction-parameter
  • 相关文献

参考文献18

  • 1Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58.
  • 2武海顺,贾建峰.氮化硼纳米管的研究进展[J].化学进展,2004,16(1):6-14. 被引量:6
  • 3王芹,陶杰,翁履谦,宋申华,陶海军.氧化钛纳米管的合成机理与表征[J].材料开发与应用,2004,19(5):9-12. 被引量:36
  • 4程利芳,张兴堂,陈艳辉,刘兵,李蕴才,黄亚彬,杜祖亮.WO_3纳米管的模板法制备及表征[J].无机化学学报,2004,20(9):1117-1120. 被引量:20
  • 5顾书英,吴琪琳.碳纳米管应用研究的现状和未来[J].同济大学学报(自然科学版),2002,30(2):213-217. 被引量:19
  • 6Gao H, Xu Y, Xu Z, et al. Sol-gel template synthesis of an array of single crystal CdS nanowires on a porous alumina template[ J]. Adv Mater, 2001, 13(18): 1393.
  • 7Poborchii V V, Ivanova M S, Salamatina I A, et al. Cylindrical GaAs quantum wires incorporated within chrysotile asbestos nanotubes : Fabrication and polarized optical absorption spectra[ J ]. Superlattices and Microstructures, 1994, 16 (2) : 133-137.
  • 8Poborchii V V, Al'perovich V I, Nozue Y, et al. Fabrication and optical properties of ultrathin CdSe filaments incorporated into the nanochannels of fibrous magnesium silicates [ J ]. Journal of Physics : Condensed Matter, 1997, 9 ( 26 ) : 5687-5695.
  • 9Dneprovskii V S, Zhukov E A, Muljarov E A, Tilhodeev S G. Linear and nonlinear excitonic absorption in semiconducting quantum wires crystallized in a dielectric matrix[J]. Journal of Experimental and Theoretical Physics, 1998, 87(2) : 382-387.
  • 10Dneprovskii V, Zhukov E. Strong dynamic optical nonlinearities of semiconductor quantum wires[ J]. Physica Status Solidi B, 1998, 206 ( 1 ) : 469-476.

二级参考文献73

  • 1Li A. P., Muller F., Bimer A. Nielsch K., Gosele U. J. Appl.Phys., 1998,84(11),6023.
  • 2Jessensky O., Muller F., Gosele U. Appl. Phys. Lett., 1998,72(10),1173.
  • 3Masuda H., Yada K., Osaka A. Jpn. J. Appl. Phys., 1998,37,L1340.
  • 4Nielsch K., Choi J., Schwirn K., Wehrspohn R. B., Gosele U. Nano Lett., 2002,2(7),677.
  • 5Xu T., Zangari G., Metzger R. M. Nano Lett., 2002,2(1),37.
  • 6Nenadovic M. T., Rajh T., Micic O. I. J. Phys. Chem., 1984,88,5827.
  • 7Bedja I., Hotchandani S. Kamat P. V. J. Phys. Chem., 1993,97,11064.
  • 8Lakshmi B. B., Dorhout P. K., Martin C. R. Chem. Mater.,1997,9,857.
  • 9Zhu K. K., He H. Y., Xie S. H., Zhang X., Zhou W. Z., Jin S. L., Yue B. Chem. Phys. Lett., 2003,377,317.
  • 10Nagasu M., Koshida N. J. Appl. Phys., 1992,71(1),398.

共引文献71

同被引文献36

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部