期刊文献+

共沉淀法制备ZrW_2O_8及其中间产物的晶体结构 被引量:1

Crystal Structure of ZrW_2O_8 and the Intermediate Products Prepared with Coprecipitation Method
下载PDF
导出
摘要 以仲钨酸铵[(NH4)10W12O41.5H2O]和氧氯化锆(ZrOCl2.8H2O)为原料,采取共沉淀法制备具有负热膨胀系数的钨酸锆(ZrW2O8)。采用X射线衍射仪(XRD)分析合成过程的前驱体、中间体和最终产物等的晶体结构,并采用FullProf-Suite程序和Material Studio程序分别对ZrW2O8晶体的XRD数据进行处理,精化修正其原子坐标参数和晶体结构参数。结果表明,前驱体结构呈无定形态;中间体的结晶度为33.66%;最终产物为立方晶系的ZrW2O8,空间群为P213(198),晶胞参数a0为0.915 98 nm,晶胞体积为0.768 52 nm3,衍射峰指标化的可靠性因子F(30)=57.1(44),峰形因子RP为0.251 9,权重因子Rwp为0.134 3。 Negative thermal expansion zirconium tungstate ZrW2O8 powder was prepared from ammonium metatungstate (NH4)10W12O41·5H2O and zirconium oxychloride ZrOCl2 · 8H2O with coprecipitation method. The physical structure of the precursor, intermediate powder in the synthesis and final product powder were analyzed by X-ray diffraction, and XRD data of ZrW2O8 crystal structure were treated by FullProf-Suite software and Material Studio software, in which the atomic coordinate parameter and the crystal structure parameter of ZrW2O8 were refined. The results indicated that the structure of precursor was identified as amorphous, the crystallinity of the intermediate was 33. 66%, and the final product was cubic phase ZrW2O8 with space group of P213 (198), cell parameter of 0. 915 98 nm and cell volume of 0. 768 52 nm^3. Through XRD data treatment it was obtained that the figure of merit for the index F(30) was 57. 1 (44), the peak profile simulation factor RP was 0. 251 9 and the weight factor Rwp was 0. 134 3.
出处 《理化检验(物理分册)》 CAS 2009年第4期191-194,共4页 Physical Testing and Chemical Analysis(Part A:Physical Testing)
基金 上海市高新工程专项资金资助项目(SU-06-05)
关键词 钨酸锆 晶体结构 X射线衍射 共沉淀法 zirconium tungstate crystal structure X-ray diffraction coprecipitation method
  • 相关文献

参考文献9

  • 1SLEIGHT A W. Negative thermal expansion materials [J]. Current Opinion in Solid State and Materials Science, 1998, 3(2): 128-131.
  • 2VERDON C, DUNAND D C. High-ternperamre reactivi- ty in the ZrW2O8-Cu systerr[J]. Scipta Materialia, 1997, 36(9) : 1075-1080.
  • 3MATSUMOTO A, KOBAYASHI K, NISHIO T, et al. Fabrication and thermal expansion of Al-ZrW2O8 composites by pulse current sintering process[J]. Materials Science Forum, 2003, 429: 2279-2284.
  • 4YILMAZ S, DUNAND D C. Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu60vol%ZrW2O8 composite[J]. Composites Science and Technology, 2004, 64(12): 1895-1898.
  • 5JOSE MANUEL GALLARDO-AMORES, ULISES AMADOR, EMILIO MORA' N, et al. XRD study of ZrW2O8 versus temperature and pressure[J]. International Journal of Inorganic Materials, 2000, 2: 123-129.
  • 6NOAILLES L D, PENG H H, STARKOVICH J, etal. Thermal expansion and phase formation of ZrW2O8 aero-gels[J]. Chemistry of Materials, 2004, 16: 1252-1259.
  • 7DE MEYER C, VANDEPERRE L, VAN DRIESSCHE I, et al. Processing effects on the microstructttre observed during densification of the NTE-compound ZrW2O8 [J]. Crystal Engineering, 2002, 5: 469-478.
  • 8MANCHEVA M N, IORDANOVA R S, DIMITRIEV Y B, et al. Direct synthesis of metastable nanocrystalline ZrW2O8 by a melt-quenching method[J]. Journal of Physical Chemistry C, 2007, 111(41): 14945-14947.
  • 9KAMESWARI U, SLEIGHT A W, EVANS J S O. Rapid synthesis of ZrW2O8 and related phases, and struc- ture refinement of ZrWMoO8 [J]. International Journal of Inorganic Materials, 2000, 2: 333-337.

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部