期刊文献+

钽酸锂单晶材料的横向场激励特性

Lateral field excitation properties of LiTaO_3 single crystal
下载PDF
导出
摘要 用(yxl)-16.51°切型的钽酸锂(LiTaO3)加工制作两个电极在同一基板平面的横向场激励器件来验证该材料的横向场激励特性。理论上用扩展的Christoffel-Bechmann方法计算了LiTaO3材料的横向场激励机电耦合系数,其c模式值最大为37.9%。实验结果表明在空气中横向场激励在5.257MHz频率附近引起了一个明显的谐振主峰,谐振处阻抗为727Ω;在液体中由于液体模拟电极的作用而形成了厚度场激励,使其在5.695MHz附近产生了另外一个谐振主峰。通过对声波相速度和谐振频率的计算也验证了实验结果。 Lateral field excitation (LFE) properties of LiTaO3 single crystal were investigated by using a (yxl)- 16.51° LiTaO3 LFE device with the two electrodes on one major plane of plate and no electrode in other side. The piezoelectric coupling factor of (yxl)-16.51° LiTaO3 was calculated by using the extended Christoffel-Bechmann method and its maximum value of 37.9% for the c mode was achieved in theory. The experiment result shows that there is a significant major peak observed at the frequency of about 5. 257MHz caused by LFE with its impedance being 727Ω in air. However, there is another resonance peak appeared nearly at the frequency of 5. 695MHz in liquid due to the influence of the analogy electrode which is formed by liquid. The above results are also verified by the calculated resonance frequency together with the acoustic wave phase velocity.
出处 《功能材料》 EI CAS CSCD 北大核心 2009年第4期564-566,共3页 Journal of Functional Materials
基金 国家自然科学基金资助项目(60571014)
关键词 钽酸锂 横向场激励 机电耦合系数 相速度 LiTaO2 lateral field excitation piezoelectric coupling factor phase velocity
  • 相关文献

参考文献10

  • 1薛冬峰.铌酸锂、钽酸锂晶体的结构特征[J].化学研究,2002,13(4):1-3. 被引量:8
  • 2Hu Yihe, French L A, Radecsky J K, et al. [J]. IEEE Trans Ultrason,Ferroelect, Freq Contr, 2004, 51(11): 1373-1380.
  • 3Ballato A, Hatch E R, Mizan M, et al. [J]. IEEE Trans Uhrason, Ferroelect, Freq Contr, 1986, 33(4): 385- 393.
  • 4Ballato A, Hatch E, Lukaszek T,et al. Laterabfield Coupling of Rotated BAW Plates with 3m, 4m, & 43m Symmetries [C]. Proc IEEE 1986 Ultrason Syrup, 1986. 339- 342.
  • 5王弘.山东大学学报:自然科学版,1984,1:65-72.
  • 6Rosenbaum J F. Bulk Acoustic Wave Theory and Devices [M]. Arthech House, 1988. 376.
  • 7Khan A, Ballato A. [J]. IEEE Trans Ultrason, Ferroelect, Freq Contr, 2002, 49(7): 922-928.
  • 8Auld B A. Acoustic Fields and Waves in Solids (Volume Ⅰ) [M]. New York: John Wiley & Sons, 1973. 357.
  • 9Ballantine D S, White R M, Martin S J, et al. Acoustic Wave Sensors: Theory, Desigh, and Physico-Chemical Applications[M]. New York: Academic Press, 1997. 40.
  • 10David R L. CRC Handbook of Chemistry and Physics (87th ed. ) [M]. Boca Raton:CRC Press,2006-2007.

二级参考文献6

  • 1薛冬峰. 中国科学院长春应用化学研究所博士学位论文[D]. 1998.
  • 2Brown I, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database[J]. Acta Crystallogr. B,1985, 41: 244-247.
  • 3Abrahams S C, Marsh P. Defect structure dependence on composition in lithium niobate[J]. Acta Crystallogr. B,1986, 42: 61-68 .
  • 4Iyi N, Kitamura K, Izumi F,et al. Comparative study of defect structures in lithium niobate with different compositions[J]. J. Solid State Chem. 1992,101, 340-352 .
  • 5Ohgaki M, Tanaka K, Marumo F. Anharmonic thermal vibration in a crystal of lithium (I) tantalum (V) trioxide, LiTaO3 [J]. Mineral J, 1989,14, 373-382 .
  • 6薛冬峰.化学键观点在寻找新型非线性光学晶体材料中的应用[J].化学研究,2001,12(1):5-7. 被引量:4

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部