期刊文献+

弱角环 被引量:5

Weakly corner rings
下载PDF
导出
摘要 设R为一个环,e2=e∈R,若对于左R-模Re的每个子模N,有ReN=N,则称R的子环eRe为弱角环,e是弱角幂等元.证明了如下结果:1若R为左MC2环,则弱角环eRe也是左MC2环;2若R为左min-abel环,则弱角环eRe也是左min-abel环;3若R为左mininjective环,则弱角环eRe也是左mininjective环;4若R为左universally mininjective环,则弱角环eRe也是左universally mininjective环. Let R be a ring with e^2=e∈R, if for any left R-submodule N of Re, ReN=N, then eRe is called the weakly corner ring of R. This paper the following results are shown: ① If R is a left MC2 ring, then so is the weakly corner ring eRe; ② If R is a left min-able ring, then so is the weakly corner ring eRe; ③ If R is a left mininjective ring, then so is the weakly corner ring ere; ④ If R is a left universally mininjective ring, then so is the weakly corner ring ere.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期7-9,共3页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10771182,10771183)
关键词 弱角环 左MC2环 左min—abel环 左mininjective环 左universally mininjective环 weakly corner rings left MC2 rings left min-able rings left mininjective rings left universally mininjective rings
  • 相关文献

参考文献4

二级参考文献16

  • 1魏俊潮.直接有限环[J].扬州大学学报(自然科学版),2005,8(2):1-3. 被引量:8
  • 2Jun Chao WEI.The Rings Characterized by Minimal Left Ideals[J].Acta Mathematica Sinica,English Series,2005,21(3):473-482. 被引量:7
  • 3魏俊潮.Quasi-duo环的刻画[J].扬州大学学报(自然科学版),2006,9(3):1-4. 被引量:8
  • 4Nicholson, W. K., "Watters, J. F.: Rings with projective socle. Proc. Amer. Math. Soc., 102, 443-450(1988).
  • 5Nicholson, W. K., Yousif, M. F.: Minijective rings. J. Algebra., 187, 548-578 (1997).
  • 6Camillo, V.: Commutative rings whose principal ideals are annihilators. Portugal Math., 46, 33-37 (1989).
  • 7Xue, W. M.: Characterization of rings using direct projective modules and direct injective modules. J. Pure App. Alg, 87, 99-104 (1993).
  • 8Parmenter, M. M., Stewart, P. N.: Excellent extensions. Comm Alg., 16(4), 703-713 (1988).
  • 9Quinn, D.: Group graded rings and duality. Trans Amer Math Soc., 292, 154-167 (1985).
  • 10Nicholson, W. K., Yousif. M. F.: Principally injective rings. J. Algebra., 174, 77-93 (1995).

共引文献14

同被引文献18

  • 1Jun Chao WEI.The Rings Characterized by Minimal Left Ideals[J].Acta Mathematica Sinica,English Series,2005,21(3):473-482. 被引量:7
  • 2魏俊潮.Quasi-duo环的刻画[J].扬州大学学报(自然科学版),2006,9(3):1-4. 被引量:8
  • 3KIM J Y. Certain rings whose simple singular modules are GP-injective [J]. Proc Japan Acad, 2005, 81(2): 125-128.
  • 4HUN C, JANG S H, KIM C O, et al. Rings whose maximal one-sided ideals are two-sided [J]. Bull Korean Math Soc, 2002,39(3): 411-422.
  • 5CHEN Jian-long, ZHOU Yi-qiang. Morphic rings as trivial exetensions [J]. Glasgow Math J, 2005, 47(4):139- 148.
  • 6ERLICH G. Units and one-sided units in regular rings [J]. Trans Amer Math, 1976,216(1): 81-90.
  • 7CHEN Wei xing. On semiabelian H-regular rings [J]. Intern J Math Sci, 2007, 23 (2) : 1-10.
  • 8VARADARAJAN K. Hopfian and co-Hopfian objects [J]. Publ Math, 1992, 36(3) : 293-317.
  • 9WEI Jun ehao. On simple singular YJ-injective modules [J]. Southeast Asian Bull Math, 2007, 31(4).. 1009- 1018.
  • 10WEI Jun-chao. Certain rings whose simple singular modules are nil-injective [J]. Turk Math, 2008, 32(4):393- 408.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部