期刊文献+

关于可数复数集比较的一个引理的证明

Proof of a lemma on comparing two countable complex sets
下载PDF
导出
摘要 通过构造辅助函数对比较可数复数集的一个引理给出详细的初等证明,从证明中可以很好地体会遍历理论的思想.该方法也可用于有限集的比较,因此讨论了有限情形的实质,并且给出该引理的一个应用. The author gives a detailed elementary proof of a lemma on comparing two countable complex sets, from which one can grasp the idea of ergodic theory. This method can also be applied to the finite sets, in which case the essential ideas are discussed. An application of the lemma is also given.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期18-20,共3页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10671171) 江苏省自然科学基金资助项目(BK2007073)
关键词 遍历理论 奇异积分 等幂和 初等对称多项式 ergodic theory singular integral sum of equal powers elementary symmetric polynomials
  • 相关文献

参考文献10

  • 1LEIBMAN A. Convergence of multiple ergodic averages along polynomials of several variables[J].Israel J Math, 2007, 46: 303-315.
  • 2BREUILLARD E. Geometry of locally compact groups of polynomial growth and shape of large balls [DB/OL]. (2007-04-01)[2008-09-02]. http://arxiv.org/PS_cache/arxiv/pdf/0704/0704.0095v1. pdf.
  • 3IONESCU A, STEIN M, MAGYAR A, et al. Discrete Radon transforms and applications to ergodic theory [J]. Acta Math, 2007, 198:231-298.
  • 4GROMOV M. Kahler hyperbolicity and L2-hodge theory [J].J Diff Geom, 1991, 33: 263-292.
  • 5WILKINSON A. Smooth ergodic theory [DB/OL]. (2008-04-01) [2008-09-03]. http://arxiv, org/PS_eaehe/ arxiv/pdf/0804/0804. 0167v1. pdf.
  • 6MICHAEL R, BARRY S. Fourier analysis, self adjointness[M]. Singapore: Elsevier (Singapore)Dte Ltd, 2003: 54-60.
  • 7ALEXANDRE I, CESAR E. Ergodic theory: nonsingular transformation[DB/OL]. (2008-03-17)[2008-09-03]. http://arxiv. org/PS_cache/arxiv/pdf/0803/0803. 2424v1. pdf.
  • 8李炯生,查建国.线性代数[M].合肥:中国科学技术大学出版社,2005:46-47.
  • 9MILNOR J, STASHEFF J. Characteristic classis [M]. Princeton New Jersey: Princeton University Press and University of Tokyo Press, 1974: 183-197.
  • 10张筑生.数学分析新讲[M].北京:北京大学出版社,2003:172-241.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部