期刊文献+

基于等级熵的自适应粒子群优化算法 被引量:2

Rank entropy-based adaptive particle swarm optimization algorithm
原文传递
导出
摘要 分析了粒子群耗散结构的特性,提出了基于等级熵的自适应粒子群优化(EPSO)算法.在演化过程的前期,针对粒子群优化(PSO)算法具有收敛速度慢、等级熵较大等特点,EPSO采用精英多父体杂交算子来提高算法的收敛速度,使群体形成有序的耗散结构.随着熵的减少,EPSO产生一个微小的混沌给予系统一个外界的负熵,使演化过程向更优适应值的方向发展.数值实验结果表明,该算法具有收敛精度高和收敛速度快的特点,可快速有效地求解某些优化问题. A rank entropy based particle swarm optimization EPSO) is proposed by analyzing the characteristic of the dissipative structure of the particle swarm. In the early evolution process, PSO has characteristics of slow convergence velocity and maximal rank entropy. EPSO adopts elite multi- parents crossover operator to improve convergence speed. With the decreasing of the rank entropy, swarm constructs orderly dissipative structure. EPSO introduces negative entropy through additional chaos so as to driving the irreversible evolution process with better fitness. Application of the EPSO to several optimization problems shows the EPSO algorithm holds the fast convergence velocity and good precise. EPSO algorithm can effectively and quickly solves some optimization problems.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第4期65-68,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家重点基础研究发展计划资助项目(2007CB31080)
关键词 等级熵 精英多父体杂交算子 耗散结构 负熵 粒子群优化 rank entropy elite multi-parents crossover operator dissipative structure negative entropy particle swarm optimization (PSO)
  • 相关文献

参考文献11

  • 1Kennedy J , Eberthart R. Particle swarm optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Perth: IEEE Inc, 1995:1 942- 1 948.
  • 2Eberhart R, Shi Y. Comparing inertia weights and constriction Factor in particle swarm optimization [C]//Proceedings of the IEEE Congress on Evolutionary Computation. San Diego: IEEE Inc, 2001: 84-88.
  • 3Wachowiak M P, Smolikova R, Zheng Y F. An approach to multimodal biomedical image registration utilizing particle swarm optimization[J]. IEEE Transaction on Evolutionary Computation, 2004, 8(3): 289-301.
  • 4Lu Z, Ji T Y, Tang W H. Optimal harmonic estimation using a particle swarm optimizer[J].IEEE Transaction on Power Dilivery, 2008, 23(2): 1 166- 1 173.
  • 5于明远,朱艺华,梁荣华.基于混合微粒群算法的网格服务工作流调度[J].华中科技大学学报(自然科学版),2008,36(4):45-47. 被引量:9
  • 6Messerchmidt L, Engelbreeht. Learning to play games using a Pos-based competitive learning approach[J]. IEEE Transaction on Evolutionary Computation, 2004, 8(3): 280-288.
  • 7Lewbjery M, Rassmussen T K, Krink T. Hybrid particle swarm optimizer with breeding and subpopulations[C]. Proccedings of the Genetic and Evolutionary Computation Conference. [s. n.], 2001:469- 476.
  • 8Higashi N, Iba H. Particle swarm optimization with Gaussian mutation[C]//Proceedings of the IEEE Swarm Intelligence Symposium. [s.l.]:IEEE Inc, 2003: 72-79.
  • 9吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:450
  • 10曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160

二级参考文献14

  • 1王勇,胡春明,杜宗霞.服务质量感知的网格工作流调度[J].软件学报,2006,17(11):2341-2351. 被引量:60
  • 2王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 3P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 4E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 5M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 6F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 7F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 8王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)
  • 9J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975
  • 10Foster I, Kishimoto H, Savva A, et al. The open grid services architecture version 1. 0 [ EB/OL]. [2008-01-22]. http: // www. ogf. org/documents/ GFD. 30. pdf.

共引文献605

同被引文献24

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 2Kennedy J, Eberhart R C. Particle Swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Perth: IEEE Inc. , 1995:1942-1948.
  • 3Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through Particle Swarm Optimization [J].Natural Computing, 2002 (1) : 235-306.
  • 4Lhotska L, Macas M, Bursa M. PSO and ACO in Optimization Problems[C]// E. Corchado, et al., eds. IDEAL 2006, LNCS 4224. 2006 : 1390-1398.
  • 5Yang Qingyun, Sun Jigui, Zhang Juyang, et al. A Hybrid Dis - crete Particle Swarm Algorithm for Open-Shop Problems[C]// T. -D. Wang,et al. ,eds. SEAL 2006,LNCS 4247. 2006:158-165.
  • 6Chang C S, Kwan C M. Evaluation of Evolutionary Algorithms for Multi-objective Train Schedule Optimization[C]//G. I. Webb, Xinghuo Yu, eds. AI 2004, LNAI 3339. 2004 : 803-815.
  • 7Clerc M,Kennedy J. The particle swarm-explosion, stability and convergence in a multi-dimensional complex space [J]. IEEE Trans. on Evolutionary Computation, 2002,6 (1) : 58-73.
  • 8Parsopoulos K E, Vrahatis M N. UPSO: A unified particle swarm optimization scheme[C]//Proc. of the ICCMSE 2004. Attica: VSP Int'l Science Publishers, 2004 : 868-873.
  • 9Zheng X, Liu H. A hybrid vertical mutation and self-adaptation based MOPSO[J]. Computers and Mathematics with Applications,2008, doi: 10. 1016/j. camwa. 2008.09. 023.
  • 10Ratnaweera A, Halgamuge S K, Watson H C. Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004,8 (3) : 240-255.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部