期刊文献+

长程相关网络通信量的预测

Forecast of network traffic with long rang dependence
原文传递
导出
摘要 针对长程突发通信量提出了两种基于α-平稳信息的预测方法:根据α-平稳过程的协变概念,推导出双曲线偏差渐近意义下的FARIMA(fractionally autoregressive integrated moving average)预测,采用自回归神经网络模拟ARMA过程,并利用遗传算法的全局优化能力与人工免疫算法的多种群快速局部收敛能力对神经网络权值进行准确估计,从而实现对通信量的FARIMA预测.这两种预测方法均能在无限方差准则下实现偏差最小,合并这两种预测值以获得最后的预测结果.对实际踪迹的预测结果证实了两种独立的预测方法有效准确,最后的混合预测能进一步提高最后的预测精度. Two distinctive predictors based on α-stable innovation are presented for the long range bursty traffic. The first FARIMA (fractionally autoregressive integrated moving average) predictor under the meaning of hyperbolic deviation asymptote is concision and computational quickness because of the injection of the covariation. The second FARIMA predictor in which autoregressive moving-average (ARMA) is simulated by recurrent neural network (RNN) was achieved. The estimation of the weights in RNN was finished exactly by genetic algorithm with the global optimization ability and artificial immune algorithm with the quick local convergence ability based on multi-population. The two predictors can minimize the dispersion according to the criteria with infinite variance. The final predicted values are obtained by combining the previous two individual predicted values. The predicted results of actual traces show that the two individual predictors are effective and accurate, what is more, the last compound predictors can enhance the final predicted precision.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第4期82-85,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金重大资助项目(60502023) 国家自然科学基金资助项目(60496315) 国家高技术研究发展计划资助项目(2003AA12331005)
关键词 网络通信量 预测 自相似 长程相关 协变 神经网络 network traffic forecasting self-similarity long range dependence covariation neural network
  • 相关文献

参考文献14

  • 1Devetsikiotis M, Fonseca N. Advances in modeling and engineering of long-range dependent traffic[J].Computer Networks, 2002, 40(3):317-318.
  • 2Song S B, NgJ K, Tang B H. Some results on the self-similarity property in communication networks[J]. IEEE Transactions on Communications, 2004, 52(10): 1 636-1 642.
  • 3Jin X, Min G Y. Performance modelling of generalized processor sharing systems with multiple self-similar traffic flows[J].Telecommunication Systems, 2008, 38(3 4): 111-120.
  • 4Zhang J, Konstantopoulos T. Multiple-access interference processes are self-similar in multimedia CDMA cellular networks[J]. IEEE Transactions on Information Theory, 2005, 51(5): 1 024-1 038.
  • 5Min G Y, Duldkhaoua M, Kouvatsos D D. Stochastic analysis of deterministic routing algorithms in the presence of self-similar traffic[J]. The Journal of Supercomputing, 2006, 35(3):245-258.
  • 6Ansari N, Liu H, Shi Y, et al. On modeling MPEG video traffics[J].IEEE Transactions on Broadcasting, 2002, 48(4): 337-347.
  • 7闻勇,朱光喜.具有重尾特性自相似网络通信量的预测[J].华中科技大学学报(自然科学版),2006,34(9):29-31. 被引量:2
  • 8Wen Y, Zhu G X. Prediction for non-gaussian self- similar traffic with neural network[C]// Proceedings of WCICA06. Dalian: [s. n.], 2006:4 224-4 228.
  • 9Sivanandam S N, Deepa S N. Introduction to genetic algorithms[M]. Berlin:Springer, 2007.
  • 10Castro D, Timmis J. Artificial immune systems: a new computational intelligence approach[J].London: Springer-Verlag, 2002.

二级参考文献5

  • 1Leland W,Taqqu M,Willinger W,et al.On the self-similar nature of ethernet traffic (extended version)[J].IEEE/ACM Trans Netw,1994,2(1):1-15.
  • 2Adler R,Feldman R,Taqqu M.A practicalguide to heavy tails:statistical techniques and applications[M].Boston:Chapman & Hall,1998.
  • 3Samorodnitsky G,Taqqu M.Stable non-gaussian random processes[M].New York:Chapman & Hall,1994.
  • 4Karasaridis A,Hatzinakos D.Network heavy traffic modeling using α-stable self-similar processes[J].IEEE Trans Commun,2001,49:1 203-1 214.
  • 5Ge Xiaohu,Zhu Guangxi,Zhu Yaoting.On the testing for alpha-stable distributions of network traffic[J].Computer Communications,2004,27(5):447-457.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部