期刊文献+

飞机复杂系统故障诊断的灰色粗集推理方法 被引量:3

Grey-Rough Set Reasoning of Fault Diagnosis in Aircraft Complex Systems
下载PDF
导出
摘要 传统的复杂系统故障诊断规则不易获取且方法单一,不能满足系统维护要求。文中全面考虑复杂系统诊断的数据来源,用灰色关联理论降低系统复杂性并通过粗糙集约简数据的思想实现灰色粗集推理。基于灰色粗集推理方法实现了故障诊断规则的获取,并通过实例验证方法的可行性,结果明显优于神经网络算法,可有效提高诊断效率。 Traditional rules of fault diagnosis are difficult to be achieved since it cannot meet the demand of system maintenance. Considering the data sources of the complex system for fault diagnosis, the grey-rough set reasoning method is used to reduce the system complexity by grey relation theory and data by rough set. Based on grey-rough set reasoning method, the raw data are changed into new fault diagnosis rules. An example shows that the method is reliable and is better than the algorithm based on neural network. Thus it is efficient to improve the fault diagnosis in complex systems.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第2期227-231,共5页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 复杂系统 灰色关联度 粗糙集 可靠性报告 complex system grey relationship rough set reliability reports
  • 相关文献

参考文献6

  • 1Chen Zhicheng, He Huacan, Mao Mingyi. Correlation reasoning of complex system based on universal logic [C]//Proceedings of the 2003 International Conference on Machine Learning and Cybernetics. Xi'an,China:IEEE, 2003(3):1831-1835.
  • 2Hofbaur M W, Williams B C. Hybrid estimation of complex systems [J]. Systems, Man and Cybernetics, Part B. 2004, 34(10): 2178-2191.
  • 3刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 4罗党,刘思峰,吴顺祥.灰色粗糙组合决策模型研究[J].厦门大学学报(自然科学版),2004,43(1):26-30. 被引量:9
  • 5吴晓兵.基于灰色粗集模型的汽车变速箱故障诊断方法[J].北京理工大学学报,2000,20(5):576-580. 被引量:5
  • 6杨树子,等.基于知识的诊断推理[M].北京:清华大学出版社,1993:5—15.

二级参考文献12

共引文献372

同被引文献48

  • 1张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策,2005,20(2):170-173. 被引量:59
  • 2齐继阳,竺长安.智能故障诊断粗糙灰色组合模型[J].哈尔滨工业大学学报,2007,39(3):501-504. 被引量:2
  • 3HU Yanhai,YAN Junqi,MA Dengzhe,YE Feifan,ZHANG Jie.MULTI-SHOP SCHEDULING PROBLEM[J].Chinese Journal of Mechanical Engineering,2007,20(3):109-112. 被引量:2
  • 4Shi Xiaolin, Zhu Jun, Cai Rui, et al. User grouping behavior in online forums[C]//International Confer- enee on Knowledge Discovery and Data Mining. Paris: ACM, 2009: 777-785.
  • 5Newman M E J. Finding community structure in networks using the eigenvectors of matrices [J]. Physical Reviem E, 2006,7,1 (3) : 036104.
  • 6Xu Kaiquan, Li Jiexun, Stephen S Y. Sentiment community detection In social networks [C]//Pro- ceedings of the 2011 iConJerence. Seattle: ACM, 2011:804-805.
  • 7Backstrom L, Huttenlocher D, Kleinberg J, et al. Group formation in large social networks: member- ship, growth, and evolution[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphi- a: ACM, 2006: 44-54.
  • 8Aldashev G, Carlletti T. Benefits of diversity, com- munication costs, and public opinion dynamics[J].Complexity, 2009, 15(2): 54-63.
  • 9Chi Yun, Song Xiaodan, Zhou Dengyong, et al. On evolutionary spectral clustering[J]. ACM Transac- tions on Knowlege Discovery from Data, 2009, 3 (4) : 1-30.
  • 10Newman M E J. Analysis of weighted networks[J]. Physieal Review E, 2004, 70(5): 056131.

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部