期刊文献+

基于核各向异性扩散的低信噪比裂纹降噪算法研究 被引量:2

Research of Low Signal-to-Noise Ratio Crack Noise Reduction Based on Kernel Anisotropic Diffusion
原文传递
导出
摘要 利用各向异性扩散和核方法,提出了一种新的核各向异性扩散去噪算法,应用于跨座式单轨轨道梁面线性裂纹的去噪取得了较好效果。在各向异性扩散的基础上,增加一个边缘增强算子,用于增强微弱的裂纹边缘信息,并且根据噪声均匀分布在多维空间的特点,把低维数据推广到高维空间,结合核方法的优点,在核空间中实现去噪,同时采用平均绝对差值的自动扩散终止规则也提高了核各向异性扩散的效率。选用不同的边缘增强权值,讨论了合适的权值范围。该方法应用于低信噪比的轨道梁面线性裂纹宽度为0.4 mm噪声的去除时,与中值滤波、传统P-M各向异性扩散去噪相比,该方法去噪效果以及信噪比明显优于其它去噪算法。 A new kernel anisotropic diffusion noise removal algorithm is proposed, mrougn amsotroplc diffusion and kernel method, to denoise linear crack on the light rail beam surface, and preferable results are obtained. On the basis of anisotropic diffusion, an enhancement operator which promotes the weak crack edge is added, and according to the characteristics of noise uniformly distributing in the multi-dimensional space, the low-dimensional data is promoted to high-dimensional space. Except for denoising in the kernel space, average absolute difference value of automatic diffusion termination criterion is introduced to enhance the efficiency of diffusion. A different edge enhanced weight is choosed to discuss the appropriate weight range. This method has been applied to noise removal of low signal-to-noise ratio track surface beam linear crack of 0. 4 mm width. Compared with median filter and traditional P-M anisotropic diffusion, the kernel anisotropic diffusion outperforms them for denoised result and signal- to-noise ratio.
出处 《光学学报》 EI CAS CSCD 北大核心 2009年第4期913-917,共5页 Acta Optica Sinica
基金 国家科技支撑计划(2007BAG06B06)资助
关键词 图像处理 降噪 核各向异性扩散 线性裂纹 image processing noise removal kernel anisotropic diffusion linear crack
  • 相关文献

参考文献8

  • 1P. Perona, J. Malik. Scale-space and edge detection using anisotropic diffusion[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12: 629-639
  • 2Shin Min Chao, Duming Tsai. An anisotropic diffusion-based defect detection for low-contrast glass substrates[J]. Image and Vision Computing, 2008,26:187-200
  • 3Jinhua Yu, Yuanyuan Wang, Yuzhong Shen. Noise reduction and edge detection via kernel anisotropic diffusion[J]. Pattern Recognition Letters, 2008, 03.002
  • 4Cover, T. M. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition[J]. IEEE Trans. Electronic Computers, 1965,EC-14, 326-334
  • 5S杜世强. 基于核Fisher判别的人脸识别方法研究[D]. 陕西师范大学,2007
  • 6Black, M. J., Sapiro, G., Marimont, D. H. Robust anisotropic diffusion[J]. IEEE Trans. Image Processing, 1998.7, 421-432
  • 7Zhang, F., Yoo, Y. M., Koh, L. M. Nonlinear diffusion in laplacian pyramid domain for ultrasonic speckle reduction[J]. IEEE Trans. Med. Imag, 2007,26: 200-211
  • 8王刚,贺安之,肖亮.基于高速公路裂纹局部线性特征内容的脊波变换域算法研究[J].光学学报,2006,26(3):341-346. 被引量:11

二级参考文献11

  • 1姚红兵,贺安之,吴颖川,乐嘉陵.虚拟和真实实验相融合的三维非完全数据层析[J].光学学报,2005,25(4):479-484. 被引量:11
  • 2Janne Huiskonen. Maintenance spare parts logistics, special characteristics and strategic choices [J]. International J.Production Economics, 2001, 71(1-3): 125-133
  • 3S. Mallat, S. Zhong. Charaeterizationof signal from multi-scale edges[J]. IEEE Transaction On Pattern Analysis and Machine Intelligence, 1992, 14(7) : 710-732
  • 4D. L. Donoho. Orthonormal ridgelets and linear singularities[R]. Technical Report. Stanford University, 1998
  • 5E. J. Candes. Ridgelet: Theoryand Application[D]. Stanford Univetsity, 1998
  • 6E. J, Candes. Monoseale ridgelets for the representation of images with edges[R]. Technical Report. Stanford University,1999
  • 7E. J. Candes, D. L. Donoho. Curvelets: a surprisingly effective non-adaptive representation for objects with edges[R]. Technical Report. Stanford University, 1999
  • 8D. L. Donoho. Emerging application of geometric multiscale analysis[C]. International Congree of Mathematicians, 2002, 1209-233
  • 9姚卫.[D].南京:南京理工大学,1997.41~43.
  • 10StephaneMallat著 杨力华译.信号处理的小波导引[M].北京:机械工业出版社,2002-09..

共引文献10

同被引文献15

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部