期刊文献+

基于前缀树的模糊关联规则挖掘算法 被引量:3

Mining Algorithm for Fuzzy Association Rules Based on Prefix Tree
下载PDF
导出
摘要 针对布尔型关联规则不能表达挖掘对象中模糊信息的关联性,给出一系列有关模糊关联规则的定义,并提出一种基于前缀树的模糊关联规则挖掘算法。通过构造前缀树来压缩存储模糊模式候选集和频繁集,有效地节约了内存开销,且只需扫描数据库2遍。实验结果表明,该算法是有效的。 In view of that the boolean association rules can not express the association of fuzzy data, this paper gives a series of definitions of fuzzy association rules and proposes a mining algorithm based on prefix tree for fuzzy association rules. The algorithm can store fuzzy pattern candidate sets and frequent sets compressibly by constructing prefix tree, which effectively saves the memory cost, besides it only scans database twice. The efficiency of the algorithm is verified by the experiment.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第7期68-69,72,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60603008) 广西教育科学课题基金资助项目(2006A-E004)
关键词 数据挖掘 关联规则 前缀树 模糊模式 data mining association rule prefix tree fuzzy pattern
  • 相关文献

参考文献4

二级参考文献16

  • 1Imielinski T, Virmani A. MSQL: Aquery Languang for Database Mining [J]. Data Mining and Knowledge Discovery, 1999,3(2):373-4(18.
  • 2Groth R. Data Mining: Building Competitive Advantage[M]. Prentice Hall, 1999.
  • 3Goebel M, Gruenwald L. A Survey of Data Mining and Knowledge Discovery Software Tools[J]. SIGKDD Explorations, 1999,1(5):20-33.
  • 4Grahne G Efficient Mining of Constrained Correlated Sets[C]. Proc,of 2000 Int. Conf. Data Engineering (ICDE'00), San Diego,2000:512-521.
  • 5Han J. Mining Frequent Patterns Without Candidate Generation [A].Proc. of 2000 ACM-SIGMOD Int. Conf, Dallas, 2000.
  • 6Han J, Pei J. Freespan: Frequent Pattern-projected Sequential Pattern Mining[R]. In Technical Report CMPT2000-06, Simon Fraser University, 2000: 6-12.
  • 7Han Jiawei. Data Mining: Concepts and Techniques[D]. Bumaby: Simon Fraser University, 2000:155-163.
  • 8Heady R, Luger G, Maccabe A, et al. The Architecture of a Network-level Intrusion Detection System.Technical Report, CS90-20, Dept. of Computer Science, University of New Mexico, Albuquerque,NM87131, 1990
  • 9Stefan A. Intrusion Detection Systems: A Survey and Taxonomy. Technical Report No 99-15, Dept. of Computer Engineering, Chalmers University of Technology, Sweden, 2000
  • 10Wenke L, Salvatore J S, Kui W M. Mining Audit Data to Build Intrusion Detection Models. The 4th International Conference on Knowledge Discovery and Data Mining, New York, 1998

共引文献9

同被引文献22

  • 1张玉芳,胡向前,熊忠阳.在JSP中使用递归算法生成目录树[J].计算机工程与设计,2005,26(1):44-46. 被引量:6
  • 2韩涛,张春海,李华.关系数据库中的模糊关联规则挖掘算法研究[J].计算机工程与设计,2005,26(7):1842-1844. 被引量:2
  • 3高俊,何守才.布尔型关联规则挖掘算法研究[J].计算机工程,2006,32(1):116-118. 被引量:5
  • 4Yan Wei-min,Wu Wei-min.Data structures (C edition)[M].Beijing:Tsinghua University Press,1997.
  • 5Wang Ning,Dong Guo-qing.An efficient XML query strategy using a prefix code[J].Journal of Shandong University (Natural Science),2007,42(11):45-48.
  • 6Das G,Lin K I,Mannila H,et al.Rule Discovery from Time Series[C] //Proc.of the 4th Int'l Cord.on Knowledge Discovery and Data Mining.New York,USA:AAAI Press,1998:16-22.
  • 7Guimaraes G.The Induction of Temporal Grammatical Rules from Multivariate Time Series[C] //Pros.of the 5th Int'l Colloquium on Grammatical Inference.London,UK:Springer-Verlag,2000:127-140.
  • 8Chan K C,Wong A K,Au W H.A Fuzzy Approach to Partitioning Continuous Attributes for Classification[J].IEEE Trans.on Knowledge and Data Engineering,2006.18(5):715-719.
  • 9Padhraic S,Goodman R M.Rule Induction Using Information Theory[M].Cambridge,UK:MIT Press,1991.
  • 10刘小霞.面向海量数据的关联规则挖掘算法研究[D].北京:北京邮电大学,2007.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部