期刊文献+

基于独立分量分析的隐蔽Web领域聚类 被引量:1

Hidden Web Domain Clustering Based on Independent Component Analysis
下载PDF
导出
摘要 针对隐蔽Web主题领域自动识别问题,提出一种基于独立分量分析(ICA)的聚类算法。对查询页面进行页面文本抽取和预处理,利用TF-IDF公式计算权重并选择前N个权重最大的特征词构造文档矩阵,在使用潜在语义索引(LSI)进行特征重构的基础上通过ICA分解获得类别信息。利用LSI的词共现分析和文本降噪能力提高聚类准确率。实验表明聚类平均准确率达到90%以上。 Aiming at organizing hidden Web databases according to their topic domains, this paper proposes an Independent Component Analysis(ICA) based algorithm for hidden Web domain clustering. Text is extracted from search interface pages as common Web pages, and TF-IDF formula is applied to weight terms. After selecting the top N-highest weight terms to construct VSM, the algorithm performs a singular value decomposition to implement features reconstruction. It applies ICA decomposition to obtain the cluster information. The main idea is utilizing the co-occurrence analysis and noise eliminating ability of Latent Semantic Index(LSI) to improve cluster performance. Experiment shows that the average precision is higher than 90 percent.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第7期175-176,179,共3页 Computer Engineering
关键词 隐蔽Web 潜在语义 独立分量分析 文本聚类 hidden Web latent semantic Independent Component Analysis(ICA) text clustering
  • 相关文献

参考文献5

  • 1Barbosa L, Freire J, Silva A. Organizing Hidden-Web Databases by Clustering Visible Web Documents[C]//Proc. of the 23rd Int'l Conf. on Data Engineering. [S. l.]: IEEE Press, 2007: 326-335.
  • 2Manning C D, Schtitze H. Foundations of Statistical Natural Language Processing[M]. Cambridge: MIT Press, 1999: 335-368.
  • 3Hyvarinen A. Fast and Robust Fixed-point Algorithms for Independent Component Analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626-634.
  • 4Kolenda T, Hansen L K, Sigurdsson S. Independent Components in Text[J]. Advances in Neural Information Processing Systems, 2000, 13(5): 235-256.
  • 5Chang Chenchuan, He Bin, Li Chengkai, et al. The UIUC Web Integration Repository[DB/OL]. (2003-05-05). http://metaquerier.cs. uiuc.edu/repository/datasets/tel-8findex.html.

同被引文献25

  • 1刘志为,何丕廉,孙越恒,郑小慎.N层向量空间模型在Web信息检索中的应用[J].微型机与应用,2004,23(12):60-62. 被引量:5
  • 2刘海峰,王元元,王倩.基于分类的VSM模式下文本检索研究[J].情报科学,2006,24(11):1700-1703. 被引量:11
  • 3张秋余,刘洋.使用基于SVM的局部潜在语义索引进行文本分类[J].计算机应用,2007,27(6):1382-1384. 被引量:4
  • 4张爱文,樊红莲.半离散矩阵分解改进算法在网页信息检索中的应用研究[J].黑龙江工程学院学报,2007,21(2):55-57. 被引量:3
  • 5Salton G, Yang C S. On the specification of tel'In values in automatic indexing[J]. Journal of Documentation,1973,29(4) :351 - 372.
  • 6Salton G, Wong A, Yang C S. A vector space model for automatic indexing[J]. Communications of the ACM, 1975, 18 ( 11 ) : 613 - 620.
  • 7Tai Xiaoying, Sasaki M, Tanaka Y, et al. Improvement of vector space information retrieval model based on supervised lemaaing [ C ]//Proceedings of the 5th International Workshop Information Retrieval with Asian Languages. New York : ACM,2000:69 - 74.
  • 8Isbell C L, Viola P. Restructuring sparse high dimensional data for effective retrieval[ C ]//Advances in Neural Information Processing Systems 11. San Mateo : Kaufmann, 1999:480 - 486.
  • 9Frakes W B, Baeza-Yates R. Information retrieval:Data structures and algorithms [ M ]. Englewood : Prentice-Hall, 1992 : 420 - 441.
  • 10Sun Yueheng, lie Pilian, Chen Zhigang. An improved team weighting scheme for vector space model [ C ]//Proceedings of the Third International Conference on Machine Learning and Cybernetics. Piscataway : IEEE ,2004 : 1692 - 1695.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部