期刊文献+

Me-NaHCO_3-NH_3-H_2O体系和Me-NaOH-NaHCO_3-H_2O体系的热力学分析 被引量:6

Thermodynamic Analysis on the Me-NaHCO_3-NH_3-H_2O and Me-NaOH-NaHCO_3-H_2O Systems
下载PDF
导出
摘要 通过对Me(Fe2+,Ni2+,Cu2+,Zn2+)-NaHCO3-NH3-H2O体系以及Me-NaOH-NaHCO3-H2O体系的热力学分析,得到各金属离子总浓度cMe与pH值的关系,确定了2种体系的完全共沉淀区域。热力学分析结果表明:在Me-NaHCO3-NH3-H2O体系中,Ni2+,Cu2+,Zn2+这3种离子和氨的配位能力很强。当总碳的浓度cC=1mol.L-1且总氮的浓度cN=0.01mol.L-1时,在pH=7.5~11范围内可实现完全共沉淀;当cN=0.05mol.L-1且cC=3mol.L-1时,在pH=70.5时可实现完全沉淀,但共沉淀范围较窄,不利于铁氧体组分的精确控制。在Me-NaOH-NaHCO3-H2O体系中,共沉淀区域由cC决定,当cC=1mol.L-1,pH=7.5~11时可实现完全共沉淀。 Through thermodynamic analysis for different Me^2+ ions (Me refers to Fe, Ni, Cu, Zn) in NaHCO3-NH3-H2O and NaOH-NaHCO3-H2O systems, the total Me^2+ concentration cMe as a function of pH was obtained, and hence the pH window of complete co-precipitation for several of Me^2+ ions is determined. The results show that Ni^2+, Cu^2+ and Zn^2+ ions are difficult to completely co-precipitate in the system containing NH3 because of their strong complexing ability with NH3,When the total carbon concentration cc is 1mol·L^-1 and the total nitrogen concentration cN is smaller than 0.01mol·L^-1, the four kinds of metal ions can be completely co-precipitated in the pH range from 7.5 to 11. Though they can also be co-precipitated entirely at pH of 6.5-7.5, while keeping CN 0.05mol·L^-1 and Cc greater than 3mol·L^-1, the pH window of complete co-precipitation is so narrow that it is disadvantage for ensuring the desired composition. In the system of Me-NaHCO3-NaOH-H2O, the pH window of complete co-precipitation is determined by the total carbon concentration co. When Cc is 1mol·L^-1, they can complete co-precipitate at the pH of 7.5-11.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2009年第4期602-608,共7页 Chinese Journal of Inorganic Chemistry
基金 云南省中青年学术技术带头人后备人才培养项目(No.2006PY01-09)资助
关键词 镍铜锌铁氧体 化学共沉淀 热力学分析 nickel copper zinc ferrite chemical co-precipitation thermodynamic analysis
  • 相关文献

参考文献18

  • 1Kodama R H. J. Magn. Magn. Mater., 1999,200:359-372.
  • 2HEXin-Hua(何新华),XIONGMao-Ren(熊茂仁),LINGZhi-Yuan(凌志远),et al.J Inorg.Mater.(Wuji CailiaoXuebao),1999,14(1):71-77.
  • 3ANGMao(王茂),ZHOUJi(周济),YUEZhen-Xing(岳振星),et al.Piezolelectr.Acoustoopt.(Yadian YuShengguang),2003,25(6):505-507.
  • 4Liu Y S, Zhang J C, Yu L M, et al. J. Magn. Magn. Mater., 2005,285:138- 144.
  • 5Choi Y, Shim H S, Lee J S. J. Alloys. Compd., 2001,326(1- 2):56-60.
  • 6Yue Z X, Zhou J, Li L T, et al. J. Mogn. Magn. Mater., 2000, 208:55-60.
  • 7Roy P K, Bera J. J. mater. Process. Techno., 2008,197:279-283.
  • 8Hsu W C, Chen S C, Kuo P C, et al. Mater. Sci. Eng., 2004, B111:142-149.
  • 9IUYin(刘银),QIUTai(丘泰).J.Inorg.Mater.(Wuji Cailiao Xuebao), 2007,22(3):391-394.
  • 10Upadhyay C D, Mishra D B, Verma H A, et al. J. Magn. Magn Mater., 2003,260:188-194.

同被引文献80

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部