期刊文献+

Mutants, Overexpressors, and Interactors of Arabidopsis Plastocyanin Isoforms: Revised Roles of Plastocyanin in Photosynthetic Electron Flow and Thylakoid Redox State 被引量:7

Mutants, Overexpressors, and Interactors of Arabidopsis Plastocyanin Isoforms: Revised Roles of Plastocyanin in Photosynthetic Electron Flow and Thylakoid Redox State
原文传递
导出
摘要 Two homologous plastocyanin isoforms are encoded by the genes PETE1 and PETE2 in the nuclear genome of Arabidopsis thaliana. The PETE2 transcript is expressed at considerably higher levels and the PETE2 protein is the more abundant isoform. Null mutations in the PETE genes resulted in plants, designated pete1 and pete2, with decreased plastocyanin contents. However, despite reducing plastocyanin levels by over -90%, a pete2 null mutation on its own affects rates of photosynthesis and growth only slightly, whereas pete1 knockout plants, with about 60-80% of the wild-type plastocyanin level, did not show any alteration. Hence, plastocyanin concentration is not limiting for photosynthetic elec- tron flow under optimal growth conditions, perhaps implying other possible physiological roles for the protein. Indeed, plastocyanin has been proposed previously to cooperate with cytochrome C6A (Cyt C6A) in thylakoid redox reactions, but we find no evidence for a physical interaction between the two proteins, using interaction assays in yeast. We observed homodimerization of Cyt C6A in yeast interaction assays, but also Cyt C6A homodimers failed to interact with plastocyanin. Moreover, phenotypic analysis of atc6-1 pete1 and atc6-1 pete2 double mutants, each lacking Cyt C6A and one of the two piastocyanin-encoding genes, failed to reveal any genetic interaction. Overexpression of either PETE1 or PETE2 in the pete1 pete2 double knockout mutant background results in essentially wild-type photosynthetic performance, excluding the possibility that the two plastocyanin isoforms could have distinct functions in thylakoid electron flow. Two homologous plastocyanin isoforms are encoded by the genes PETE1 and PETE2 in the nuclear genome of Arabidopsis thaliana. The PETE2 transcript is expressed at considerably higher levels and the PETE2 protein is the more abundant isoform. Null mutations in the PETE genes resulted in plants, designated pete1 and pete2, with decreased plastocyanin contents. However, despite reducing plastocyanin levels by over -90%, a pete2 null mutation on its own affects rates of photosynthesis and growth only slightly, whereas pete1 knockout plants, with about 60-80% of the wild-type plastocyanin level, did not show any alteration. Hence, plastocyanin concentration is not limiting for photosynthetic elec- tron flow under optimal growth conditions, perhaps implying other possible physiological roles for the protein. Indeed, plastocyanin has been proposed previously to cooperate with cytochrome C6A (Cyt C6A) in thylakoid redox reactions, but we find no evidence for a physical interaction between the two proteins, using interaction assays in yeast. We observed homodimerization of Cyt C6A in yeast interaction assays, but also Cyt C6A homodimers failed to interact with plastocyanin. Moreover, phenotypic analysis of atc6-1 pete1 and atc6-1 pete2 double mutants, each lacking Cyt C6A and one of the two piastocyanin-encoding genes, failed to reveal any genetic interaction. Overexpression of either PETE1 or PETE2 in the pete1 pete2 double knockout mutant background results in essentially wild-type photosynthetic performance, excluding the possibility that the two plastocyanin isoforms could have distinct functions in thylakoid electron flow.
出处 《Molecular Plant》 SCIE CAS CSCD 2009年第2期236-248,共13页 分子植物(英文版)
  • 相关文献

参考文献68

  • 1Abdel-Ghany, S.E., Muller-Moule, R, Niyogi, K.K., Pilon, M., and Shikanai, T. (2005). Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Celt 17, 1233-1251.
  • 2Alban, A., David, S.O., Bjorkesten, L., Andersson, C., Sloge, E., Lewis, S., and Cuttle, I. (2003). A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3, 36-44.
  • 3Bassi, R., dal Belin Peruffo, A., Barbato, R., and Ghisi, R. (1985). Differences in chlorophyll-protein complexes and composition of polypeptides between thylakoids from bundle sheaths and mesophyll cells in maize. Eur. J. Biochem. 146, 589-595.
  • 4Beal, D., Rappaport, F., and Joliot, R (1999). A new high-sensitivity 10-ns time-resolution spectrophotometric technique adapted to in vivo analysis of the photosynthetic apparatus. Review of Scientific Instruments 70, 202-207.
  • 5Blanc, G., Hokamp, K., and Wolfe, K.H. (2003). A, recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13, 137-144.
  • 6Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
  • 7Briggs, L.M., Pecoraro, VoL., and Mclntosh, L. (1990). Copperinduced expression, cloning, and regulatory studies of the plastocyanin gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol. Biol. 15, 633-642.
  • 8Buchanan, B.B., and Luan, S. (2005). Redox regulation in the chloroplast thylakoid lumen: a new frontier in photosynthesis research. J. Exp. Bot. 56, 1439-1447.
  • 9Burkey, K. (1993). Effect of growth irradiance on plastocyanin levels in barley. Photosynth. Res. 36, 103-110.
  • 10Burkey, K.O. (1994). Genetic variation of photosynthetic electron transport in barley: identification of plastocyanin as a potential limiting factor. Plant Science 98.

同被引文献46

引证文献7

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部