期刊文献+

两种群竞争非线性反应扩散系统奇摄动Robin问题 被引量:1

Nonlinear singularly perturbed Robin problems for reaction diffusion system of two-species competition
下载PDF
导出
摘要 研究了一类生物数学中新的非线性两种群竞争反应扩散系统奇摄动Rob in问题,在适当的假设下,对此问题解的存在性及渐近性态作了较深入的讨论,利用伸长变量构造了问题解的形式展开式,并用微分不等式理论,证明了问题解渐近展开式的一致有效性. A class of new nonlinear singularly perturbed Robin initial boundary value problems for reaction diffusion systems of two-species competition are considered. Under suitable assumptions, the formal asymptotic expansion for these problems is constructed using the stretched variable. And the uniform validity of the solution for initial boundary value problems is proved using the theory of differential inequalities.
作者 王庚
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第3期196-197,249,共3页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(70471071)
关键词 非线性 两种群竞争系统 反应扩散 奇摄动 ROBIN问题 nonlinear two-species competitive system reaction diffusion singular perturbation Robin problem
  • 相关文献

参考文献6

二级参考文献13

  • 1高汝熹.具转向点的二阶椭圆型方程的奇摄动[J].复旦学报:自然科学版,1981,20(3):296-305.
  • 2DE JAGER E M, JIANG F. The theory of singular perturbation[ M]. Amsterdam: North-Holland Publishing Co.1996.
  • 3KADALBAJOO M K, PATIDAR K C. Singularly perturbed problems in partial differential equations [J]. Appl Math Comput, 2003, 134:371-429.
  • 4TANIGUCHI M. Instability of planar traveling waves in bistable reaction-diffusion systems [ J ]. Discrete and Continuous Dynamical Systems, 2003, 3B (1): 21 - 44.
  • 5DO NASCIMENTO A S. Stable transition layers in a semilinear diffusion equation with spatial inhomogeneties in N-dimensional domains[J]. J Differential Eqns, 2003, 190:16- 38.
  • 6MIMURA M, NISHIURA Y, YAMAGUTI M. Some diffusive prey and predator systems and their bifurcation problems[ J].Ann New York Acad Sci, 1979, 316:490 - 510.
  • 7蔡建平,微分方程年刊,1997年,13卷,1期,77页
  • 8Pao C V,Lecture Notes in Pure and Applied Mathematics.162,1994年,162卷,277页
  • 9高汝熹,复旦学报,1981年,20卷,3期,296页
  • 10江福汝,应用数学和力学,1980年,2期,201页

共引文献11

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部