期刊文献+

关于n-阶线性周期微分方程的次正规解 被引量:1

On Subnormal Solutions of n-Order Linear Periodic Differential Equations
下载PDF
导出
摘要 研究了n-阶周期系数齐次线性微分方程f(n)+[Pn-1(ez)+Qn-1(e-z)]f(n+1)+…+[P0(ez)+Q0(e-z)]f=0及其对应的非齐次线性微分方程次正规解的存在性和解的增长性,其中Pj(z),Qj(z)(j=1,…,n-1)为多项式,在假设degP0>degPj或者degQ0>degQj的条件下,证明了齐次方程没有非平凡的次正规解,且它的每个非平凡解的超级满足σ2(f)=1. In this paper, we investigated the existence of subnormal solution and the growth properties of solutions for n- order periodic coefficient homogeneous linear differential equations f^(n)+[Pn-1(e^z)+Qn-1(e^-z)]f^(n+1)+…+[Po(e^z)+Q0(e^-z)]f=0(where Pj(z),Qj(z)(j=1,…,n-1) are polynomal) and its corresponding non-homogeneous equation, we proved the non-existence of subnormal solutions of homogeneous differential equations and the hype order of non-trivial solution satisfied σ2(f) = 1 ifdegP0 〉 degPj or degQ0 〉 degQj .
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2009年第1期1-4,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(10871108) 江西省教育厅科技(赣教技字[2006]122号) 江西师范大学创新基金资助项目
关键词 周期微分方程 次正规解 超级 periodic differential equation subnormal solution hype order
  • 相关文献

参考文献1

二级参考文献7

  • 1Chen Zongxuan.The growth of solutions of f″ + e-z f′+ Q(z)f = 0 where the order (Q) = 1[J].Science in China Series A: Mathematics.2002(3)
  • 2He Y Z,Xiao X Z.Algebroid Functions and Ordinary Differential Equations (in Chinese)[]..1988
  • 3Hayman W.Meromorphic Function[]..1964
  • 4Yi H X,Yang C C.The Uniqueness Theory of Meromorphic Functions (in Chinese)[]..1995
  • 5Ince E.Ordinary Differential Equations[]..1927
  • 6Laine I.Nevanlinna Theory and Complex Differential Equations[]..1993
  • 7Yang L.Value Distribution Theory and Now Research (in Chinese)[]..1982

共引文献10

同被引文献13

  • 1江良英,陈宗煊.某类高阶整函数系数微分方程解的增长性[J].江西师范大学学报(自然科学版),2005,29(1):12-14. 被引量:2
  • 2陈宗煊.关于二阶线性周期微分方程的次正规解[J].中国科学(A辑),2007,37(3):361-374. 被引量:5
  • 3Wittich H. Subnormale lostmgen der differentialgleichtmg w^n+p(e^x)w' +q(e^x)w =0 [J]. Nagoya Math J,1967, 30 : 29 -37.
  • 4Huang Zhibo, Xia Xiaohua, Li Qian. Subnormal solutions of second order nonhomogeneous linear periodic differenti-al equations [ J ]. Commun Nonlinea Sci Numer Simulat, 2010,15(4) :881-885.
  • 5Chiang Y M, Gao Shian. On a problem in complex oscilla- tion theory of periodic second order linear differential e- quation and some related perturbation results [ J ]. Ann Acad Sci Fenn Math,2002,27(2) :273-290.
  • 6Gundersen G G, Steinbart E M. Subnormal solutions of second order linear differential equations with periodic co- efficients [ J ]. Results in Math, 1994,25 (3/4) :270-289.
  • 7Urabe H, Yang Congjun. On factorization of entire func- tions satisfying differential equations [ J ]. Kodai Math J, 1991,14(1) :123-133.
  • 8Gundersen G G. Estimates for the logarithmic derivative of a meromorphic function,plus similar estimates [ J]. J Lon- don Math Soc, 1988,37(2) :88-104.
  • 9Gundersen G G. Finite order solutions of second order lin- ear differential equations [ J ]. Trans Amer Math Soc, 1988,305( 1 ) :415-429.
  • 10黄志波,陈宗煊.周期系数二阶齐次线性微分方程的次正规解[J].数学学报(中文版),2009,52(1):9-16. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部